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ABSTRACT

Probabilistic risk assessment (PRA) is a mature technology that can provide a quantitative assessment of the risk from
accidents in nuclear power plants.   It involves the development of models that delineate the response of systems and
operators to accident initiating events.  Additional models are generated to identify the component failure modes required
to cause the accident mitigating systems to fail.  Each component failure mode is represented as an individual “basic
event” in the systems models.  Estimates of risk are obtained by propagating the uncertainty distributions for each of the
parameters through the PRA models.

The data analysis portion of a nuclear power plant PRA provides estimates of the parameters used to determine the
frequencies and probabilities of the various events modeled in a PRA.  This handbook provides guidance on sources of
information and methods for estimating the parameters used in PRA models and for quantifying the uncertainties in the
estimates.   This includes determination of both plant-specific and generic estimates for initiating event frequencies,
component failure rates and unavailabilities, and equipment non-recovery probabilities.  
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FOREWORD

During the last several years, both the U.S. Nuclear Regulatory Commission (NRC) and the nuclear industry have
recognized that probabilistic risk assessment (PRA) has evolved to the point where it can be used in a variety of
applications including as a tool in the regulatory decision-making process.  The increased use of PRA has led to the
conclusion that the PRA scope and model must be commensurate with the applications.  Several procedural guides and
standards have been and are being developed that identify requirements for the PRA models. For example, the “Standard
For Probabilistic Risk Assessment For Nuclear Power Plant Applications” published by The American Society of
Mechanical Engineers (ASME) in 2002 (ASME-RA-S-2002) defines requirements for PRA analysis used to develop risk-
informed decisions for commercial nuclear power plants, and describes a process for applying these requirements in
specific applications. This handbook was generated to support these documents by providing a compendium of good
practices that a PRA analyst can use to generate the parameter distributions required for quantifying PRA models.

The increased use of risk assessment has also helped   promote the idea that the collection and analysis of event data is
an important activity in and of itself.  In particular, the monitoring of equipment performance and evaluation of
equipment trends can be used to enhance plant performance and reliability.  The reference material provided in this
handbook can support those efforts.

This handbook provides references on sources of information and methods for estimating parameter distributions.  This
includes determination of both plant-specific and generic estimates for initiating event frequencies, component failure
rates and unavailability, and equipment non-recovery probabilities, all of which directly supplement the ASME PRA
standard.  

This handbook provides the basic information needed to generate estimates of the parameters listed above.  It begins by
describing the probability models and plant data used to evaluate each of the parameters.  Possible sources for the plant
data are identified and guidance on the collection, screening, and interpretation is provided.  The statistical techniques
(both Bayesian and classical methods) required to analyze the collected data and test the validity of statistical models
are described.  Examples are provided to help the PRA analyst utilize the different techniques.

This handbook also provides advanced techniques that address modeling of time trends.  Methods for combining data
from a number of similar, but not identical, sources are also provided.  This includes empirical and hierarchical Bayesian
approaches.  Again, examples are provided to guide the analyst.

This handbook does not provide guidance on parameter estimation for all types of events included in a PRA.
Specifically, common cause failure and human error probabilities are not addressed.  In addition, guidance is not
provided with regard to the use of expert elicitation.  For analysis of these events, the PRA analyst should consult other
sources, some of which are cited in Chapter 1.
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1.  INTRODUCTION

1.1 Objective

The data analysis portion of a nuclear power plant
probabilistic risk assessment (PRA) provides estimates
of the parameters used to determine the frequencies and
probabilities of the various events modeled in a PRA.
The objective of this handbook is to provide methods
for estimating the parameters used in PRA models and
for quantifying the uncertainties in the estimates. 

1.2 Background

Probabilistic risk assessment is a mature technology
that can provide a quantitative assessment of the risk
from accidents in nuclear power plants.   It involves the
development of models that delineate the response of
systems and operators to accident initiating events.
Additional models are generated to identify the
component failure modes required to cause the accident
mitigating systems to fail.  Each component failure
mode is represented as an individual “basic event” in
the systems models.  Estimates of risk are obtained by
propagating the uncertainty distributions for each of the
parameters through the PRA models.

During the last several years, both the U.S. Nuclear
Regulatory Commission (NRC) and the nuclear industry
have recognized that PRA has evolved to the point
where it can be used in a variety of applications,
including as a tool in the regulatory decision-making
process.  The increased use of PRA has led to the
conclusion that the PRA scope and model must be
commensurate with the applications.  Several
procedural guides and standards have been and are
being developed that identify requirements for the PRA
models.  This handbook was generated to supplement
these documents.  It provides a compendium of good
practices that a PRA analyst can use to generate the
parameter distributions required for quantifying PRA
models.

The increased use of risk assessment has also helped
promote the idea that the collection and analysis of
event data is an important activity in and of itself.  In
particular, the monitoring of equipment performance
and evaluation of equipment trends can be used to
enhance plant performance and reliability.  The
guidance provided in this handbook can support those
efforts.

1.3 Scope

This handbook provides guidance on sources of
information and methods for estimating parameter
distributions.  This includes determination of both
plant-specific and generic estimates for initiating event
frequencies, component failure rates and
unavailabilities, and equipment non-recovery probabili-
ties.  

This handbook provides the basic information needed
to generate estimates of the parameters listed above.  It
begins by describing the probability models and plant
data used to evaluate each of the parameters.  Possible
sources for the plant data are identified and guidance on
the collection, screening, and interpretation is provided.
The statistical techniques (both Bayesian and classical
methods) required to analyze the collected data and test
the validity of statistical models are described.
Examples are provided to help the PRA analyst utilize
the different techniques.  

This handbook also provides advanced techniques that
address modeling of time trends.  Methods for
combining data from a number of similar, but not
identical, sources are also provided.  These are the
empirical and hierarchical Bayesian approaches.
Again, examples are provided to guide the analyst.

This handbook does not provide guidance on parameter
estimation for all of the events included in a PRA.
Specifically, common cause failure and human error
probabilities are not addressed.  In addition, guidance
is not provided with regard to the use of expert
elicitation.  For these topics, the PRA analyst should
consult other sources, such as the following references:

Common cause failures

• NUREG/CR-5497 (Marshall et al. 1998),
• NUREG/CR-6268 (Kvarfordt et al. 1998),
• NUREG/CR-5485 (Mosleh et al. 1998),
• NUREG/CR-4780 (Mosleh et al. 1988), and
• EPRI NP-3967 (Fleming, 1985).

Human errors

• NUREG/CR-1278 (Swain and Guttman, 1983),
• NUREG/CR-4772 (Swain, 1987),
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• NUREG-1624 (NRC, 2000b), and
• EPRI TR-TR-100259 (Parry et al. 1992).

Expert Judgement

• NUREG/CR-6372 (Budnitz et al. 1997) and
• NUREG/CR-1563 (Kotra et al. 1996).

This list is not meant to be a comprehensive list of all of
the methodologies available for performing these types
of analyses. 

1.4 Contents of the Handbook

This section provides a road map of the contents of the
handbook and an overview discussion on how to use the
handbook to perform the elements of a data analysis.
The basics of probability and statistics described in
Appendices A and B, respectively, are provided as
reference material for the analyst.  Appendix C provides
statistical tables for selected distribution types that can
be used in the data analysis.

1.4.1 Identification of Probability Models

The handbook provides guidance on the evaluation of
five types of parameters that are included in a PRA:

• initiating events,
• failures to start or change state,
• failures to run or maintain state,
• durations, and
• unavailability from being out of service.

A description of each of these parameters along with
examples, is provided in Chapter 2.  Chapter 2 is
fundamental reading for all users of this handbook.

The first step in a data analysis is to determine the
appropriate probability models to represent the
parameter.   Chapter 2 provides a detailed description
of the standard probability models for each event.  This
includes a discussion of the assumptions on the physical
process inherent in the models and a description of the
kind of data that can be observed.  The type of data
required to estimate the model parameter(s) are
described and example data sets are examined in the
light of the model assumptions.  These examinations
illustrate the kind of thinking necessary for the data
analyst.  Finally, a short discussion of related issues is
presented for the analyst to consider.

1.4.2 Collection of Plant Specific Data

Once probability models have been defined for the
basic events, plant-specific data should be evaluated for
the purpose of quantifying estimates of the probability
model parameters.  Plant-specific data, if available in
sufficient quantity and quality, is the most desirable
basis for estimating parameter values.  Chapter 5
discusses the process by which plant-specific data
should be identified, collected, screened, and
interpreted for applicability to the basic events defined
in the systems analysis and to their probability models.
To ensure that the collection and evaluation of plant-
specific data is thorough, consistent, and accurate, the
steps laid out in Chapter 5 should be followed for
events defined in a PRA.  The identification and
evaluation of appropriate sources of plant-specific data
for the basic events are discussed in Section 4.1.  

The process for collecting and evaluating data for
initiating events is discussed in Section 5.1.  Guidance
is provided for screening the data, for grouping the data
into appropriate categories of initiating events, and for
evaluating the denominator associated with the data.  

The process for collecting and evaluating data for
component failures is discussed in Section 5.2.  It is
critical that data be collected and processed accurately
according to the definition of the component boundary.
For example, it should be clearly noted whether or not
a pump’s control circuit is within or without the
physical boundaries of the component for purposes of
systems modeling.  If failure of the control circuit has
been modeled separately from hardware failures of the
pump, then data involving failure of the pump should be
carefully evaluated to ensure that actuation failures and
other pump faults are not erroneously combined.  This
process could result in some iteration between the
systems analysis task and the data collection task.  It is
possible that system models may be simplified or
expanded based on insights derived during the data
collection.  Chapter 3 describes the difference between
faults and failures, and discusses component boundary
definitions and  failure severity as it relates to data
collection and analysis.

Other aspects of data collection for component failures
discussed in Section 5.2 include classification and
screening of the data, allocation of the data to
appropriate component failure modes, and exposure
evaluation (determining the denominator for parameter
estimates). 
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The collection of data for recovery events is described
in Section 5.3.  Guidance is provided on where to find
recovery-related data and on how to interpret such data.

1.4.3 Quantification of Probability
Model Parameters

Once appropriate probability models have been selected
for each basic event, estimates for the model parameters
must be quantified.  There are two basic approaches: 1)
statistical estimation based on available data; and 2)
utilization of generic parameter estimates based on
previous studies.  Both approaches can incorporate
generic data.  Several generic data sources currently
available and used throughout the nuclear PRA industry
are identified in Section 4.2.

1.4.3.1 Parameter Estimation from 
Plant-Specific Data

If the plant-specific data collection process yields data
of sufficient quantity and quality for the development of
parameter estimates, the statistical methods in Chapter
6 can be applied to the data to derive and validate
parameter estimates for the basic events.  

Chapter 6 discusses the statistical methods  for
estimating the parameters of the probability models
defined in Chapter 2.  Note that Appendix B discusses
basic concepts of statistics that will help the user to
understand the methods presented in Chapter 6.

For each type of event, two fundamental approaches are
presented for parameter estimation:  classical
(frequentist) and Bayesian.  An overview and
comparison of these two approaches are presented in
Section 6.1.  The Bayesian approach is more commonly
used in PRA applications, but classical methods have
some use in PRA, as discussed in Section 6.1.  

The probability models discussed in Chapter 2 for each
type of event are applicable for most applications.
However, erroneous results can occur in some cases if
the assumptions of the model are not checked against
the data.  In some applications (e.g., if the impact of
casual factors on component reliability is being
examined) it is imperative that the probability model
chosen for each basic event be validated given the
available data.  It may seem sensible to first confirm the
appropriateness of the model and then estimate the
parameters of the model.  However, validation of a
model is usually possible only after the model has been
assumed and the corresponding parameters have been
estimated.  Thus, estimation methods are presented first

in Chapter 6 for each type of probability model; then
methods for validating the models against the available
data are presented.  

1.4.3.2 Parameter Estimation from Existing Data
Bases

If actual data are unavailable or of insufficient quality
or quantity then a generic data base will have to be
used.  Several generic data sources currently available
and used throughout the nuclear PRA industry are
identified in Section 4.2.  Section 4.2.6 provides
guidance on the selection of parameter estimates from
existing generic data bases.  

1.4.4 Advanced Methods

The last two chapters of the handbook describes some
methods for analyzing trends in data and Bayesian
approaches for combining data from a number of
similar sources.  

1.4.4.1 Analyzing Data for Trends and Aging

Data can be analyzed to assess the presence of time
trends in probability model failure rates and
probabilities (i.e., 8 and p).  Such trends might be in
terms of calendar time or in terms of system age.
Ordinarily, the analysis of data to model time trends
involves complex mathematical techniques.  However,
the discussion of Chapter 7 presents various approaches
that have been implemented in computer software.  The
discussion in Chapter 7 focuses on the interpretation of
the computer output for application in PRA.

1.4.4.2 Parameter Estimation Using Data from
Different Sources

Two Bayesian approaches for combining data from a
number of similar, but not identical, sources are
discussed in Chapter 8.  

1.5 How to Use This Handbook

This handbook is intended for workers in probabilistic
risk assessment (PRA), especially those who are
concerned with estimating parameters used in PRA
modeling.  Broadly speaking, three groups of readers
are anticipated: data collectors, who will be finding,
interpreting, and recording the data used for the
estimates; parameter estimators, who will be
constructing the parameter estimates from the data and
quantifying the uncertainties in the estimates; and (to a
lesser extent) PRA analysts, who will be using the
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estimated parameters.  These three groups will find
their primary interests in different portions of the
handbook, as discussed below.

The major sections of the handbook can be grouped
into several areas:

• Foundation:  Chapters 1 and 2;
• Data Collection:  Chapters 3, 4, and 5;
• Parameter Estimation:  Chapters 6, 7, and 8; and
• Supporting Material:  Appendices, References,

Index.

These sections are shown in Figure 1.1, a schematic
representation of the contents of the handbook.

PRA analysts will be most interested in the foundational
material.  Data collectors will need to read much of  the
foundational material, and then read the chapters on
data collection.  Parameter estimators will need to read
the foundational chapters, but may then wish to skip
directly to the relevant sections on parameter
estimation.  The supporting material can be read by
anyone at any time.

The arrows in Figure 1.1 help the reader find the
quickest way to the sections of interest.  For example,
the figure shows that Chapters 3-5 and Chapters 6-8 do

not refer to each other or assume material from the
other section, so it is possible to read from one section
and not the other.  The only strong dependencies are
shown by the arrows: read Chapter 2 before starting
Chapter 3 or 6, read Chapter 3 before starting Chapter
4 or 5, and so forth.  In practice, data collectors, data
analysts, and PRA analysts must work together, giving
feedback to each other.  The handbook, on the other
hand, is formed of distinct segments, each of which can
be read in isolation from the others.

The material for PRA analysts and data collectors is
intended to be accessible by anyone with an engineering
background and some experience in PRA.  The material
for data analysts, on the other hand, begins with
elementary techniques but eventually covers advanced
models and methods.  These advanced topics will not
be needed in most cases, but are included as reference
material.  

To aid the reader, Appendices A and B summarize the
basics of probability and statistics, and Appendix C
provides useful statistical tables.  A glossary of terms is
provided in Appendix D.  Persons who have no
previous experience with probability or statistics will
need a more thorough introduction than is provided in
these sections of the handbook.
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2.  BASIC EVENT PROBABILITY MODELS

2.1 Overview

This chapter introduces the models used for basic
events and for initiating events.  This first section is an
overview, and the remaining sections of the chapter
give further detail.

Probabilistic risk assessment (PRA) considers various
possible accident sequences.  An accident sequence
begins with an initiating event which challenges the
safety of the plant.  Typically, one or more standby
safety systems are then demanded, and other, normally
operating, systems must continue operating to ensure
that no serious undesirable consequences occur.  For
the systems to fail to bring the situation under control,
several components must either fail or be unavailable.
The logic events in the PRA model that represent these
failures or modes of unavailability are called basic
events.

It is not possible to predict precisely when an initiating
event or a component failure will occur, because the
processes that lead to their occurrences are complex.
Therefore, the initiating events and basic events are
modeled as resulting from random processes.

The first step in the data analysis task is, therefore, to
determine the appropriate probability model to repre-
sent the initiating event or basic event.  (Probability is
reviewed in Appendix A, and the probability models
introduced here are presented more fully there.)  These
probability models typically have one or more
parameters.  The next major step is to estimate the
values of these parameters.  This estimation is based on
the most applicable and available data.  The process of
choosing data sources, extracting the data in an
appropriate form, and using it to estimate the
parameters is the main subject of this handbook.

Basic events are customarily divided into unavailability
(because the equipment is undergoing testing or
maintenance), failure to start or change state, and
failure to run  (after successfully starting) or maintain
state to the end of the required mission time.
Unavailability and failure to run are each modeled in a
single way.  On the other hand, two different probability
models have been used to represent a failure to start or
to change state.  The first method is to model the
failures as having a constant probability of failure on
a demand.  The second method is to model the failures
as occurring, in an unrevealed way, randomly in time.

The failed condition is then discovered at the time of
the demand.  This is usually called the standby failure-
rate model.  Both models are discussed here.

The above events are the typical ones considered in a
PRA.  In addition, one must occasionally analyze
durations, such as the time to restore offsite power or
time to recover a failed component.  Although such an
analysis is not needed for a typical accident sequence,
it is discussed in this handbook.  Also, methods for
analyzing durations can be used when estimating
unavailability.

In summary, five topics are considered in the rest of this
chapter:

• initiating events,
• failures to start or change state (modeled in two

possible ways),
• failures to run or maintain state,
• durations, and
• unavailability from being out of service.

These topics are the subjects of Sections 2.2 through
2.6.  Each section begins with examples of the data that
might be analyzed.  This is followed by a brief
subsection presenting the assumptions of the usual
model for the random process (the result of underlying
physical mechanisms) and describing the kind of data
that can be observed.  The next subsection summarizes
the data required to estimate the model parameter(s).
The example data sets are then examined in the light of
the model assumptions.  These examinations illustrate
the kind of thinking necessary for the data analyst.
Finally, the section may conclude with a short
discussion of related issues.

As a preview, Table 2.1 indicates the models, the
parameters, and the data needed for each of the topics
in the above five bullets.  The top line of the table also
indicates which section of Chapter 2 treats the topic.  

The term system is used to denote the set of hardware
for which data are collected; it may be an entire nuclear
power plant (NPP), or a system in the traditional sense,
such as the auxiliary feedwater (AFW) system, or a
train, component, or even piece part.  This reduces the
need for phrases such as “system or component.”

The lengthiest part of each section below consists of the
examination of examples to see whether the
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Table 2.1   Kinds of models considered.

2.2 Initiating
Events

2.3 Failures to Start or Change
State (2 models)

2.4 Failures to Run
or Maintain State

2.5 Durations 2.6 Unavailability

Typical Event

Event occurs
initiating an
accident
sequence

Standby system fails on demand System in operation
fails to run, or
component changes
state during mission

A condition
persists for a
random time
period

System is unavail-
able, intentionally
out of service,
when demanded

Parameter(s) to Estimate

8, event
frequency

For failure on
demand:
p, probability
of failure on
demand

For standby
failure:
8, rate of
occurrence of
standby
failures

8, rate of failure to
run

Parameters of
assumed
probability
distribution of
duration time

q, fraction of time
when system will
be out of service

Data Required to Estimate Parametersa

Number of
events, x, in
total time, t

Number of
failures, x, in
total number of
demands, n

Number of
failures, x, in
total standby
time, t

Number of failures,
x, in total running
time, t

Depends on
model, but
typically the
lengths of the
observed
durations

Onset times and
durations of
observed out-of-
service events; OR
observed fractions
of time when
system was out of
service

a.  The data here are the minimal requirements to estimate the parameter.  More detailed data are needed to check the
model assumptions.

assumptions of the probability model appear to be
satisfied.  Verifying model assumptions is an important
part of good data analysis.  Ways to investigate the
appropriateness of assumptions are considered in
Chapter 6, along with parameter estimation.  The
present chapter, however, only introduces the
assumptions and illustrates their meanings through
examples.  If the assumptions are clearly not satisfied,
some mention is given of ways to generalize the model,
although such generalizations are not presented until
Chapters 7 and 8 in this handbook.

Also, examples and extended discussion of examples
are printed in Arial font, to distinguish them from the
more general material.

2.2 Initiating Events

2.2.1 Examples

In the context of a nuclear-power-plant PRA, an
initiating event is any event that perturbs the steady
state operation of the plant, thereby initiating an
abnormal event such as a transient or a loss-of-coolant
accident within a plant.  Initiating events begin
sequences of events that challenge plant control and
safety systems.  Failure of these systems can lead to
core damage and a release of radioactivity to the
environment.  However, the consideration of the
potential plant response to initiating events is irrelevant
when estimating their frequencies.  
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Here are several examples of data sets counting such
initiating events.

Example 2.1 Unplanned reactor trips

A U.S. commercial nuclear power plant had 34
unplanned reactor trips in 1987 through 1995.  It
had its initial criticality on Jan. 3, 1987, and
experienced a total of 64651 critical hours, or
7.38  critical years (Poloski et al. 1999a).

Example 2.2 Shutdown loss of offsite power

In U.S. commercial nuclear power plants in 1980-
1996, there were 80 plant-centered loss-of-offsite-
power (LOSP) events during shutdown.  In that
period, the plants experienced 455.5 reactor-
shutdown years (Atwood et al. 1998).

Example 2.3 Through-wall pipe leaks

In world-wide experience of western-style
pressurized water reactors (PWR)s (3362
calendar years of operation), a single through-wall
leak event has been reported in large-diameter
piping ( Poloski et al. 1999a, Appendix J).

The final example of this section does not have
initiating events in the usual sense.  However, the model
assumptions and the form of the data are exactly the
same as for initiating events.  Therefore, such data can
be analyzed just like initiating-event data.

Example 2.4 Temperature sensor/transmitters

Eide et al. (1999a) report that temperature sensor/
transmitters in the reactor protection system
(RPS) of Westinghouse NPPs had 32 failures in
2264.1 component-years.  These sensor/transmit-
ters operate continuously, and when they fail they
are repaired or replaced in a relatively short time.
The number of failures is conservatively estimated
from sometimes incomplete Nuclear Plant
Reliability Data System (NPRDS) data, and the
number of component years is based on an
estimated number of components per loop.

These examples have several elements in common.
First, they involve a number of events that occurred,

and an exposure time, or time at risk, when the events
could have occurred.  The next subsection will present
a simple probability model that gives rise to random
events in time.  In addition, in each of the above
examples  corrective action is taken after any event, so
that the system then resumes operation (the system is
repairable.)  This means that the recorded operating
history consists of a sequence of random event
occurrences, which is summarized as a count of events
in some fixed time.  This type of data will direct us to
a particular type of analysis, presented in Chapter 6.

The events may be the initiating events of an ordinary
PRA (Example 2.1), initiating events of a shutdown
PRA (Example 2.2), failures in a passive system
(Example 2.3), which incidentally happen to be
initiating events in a PRA.  As mentioned above,
Example 2.4 does not describe initiating events in the
traditional PRA sense.  However, the example may be
analyzed in the same way as the first three examples,
because the sensor/transmitter failures occur in a
continuously running system and they initiate quick
repair action.  A PRA analyst would distinguish among
the examples based on their safety consequences.  The
present discussion, however, adopts the viewpoint of
probability modeling, in which the important fact is not
the consequence of the events, but the way that they
occur randomly in time.  Reactor trip initiators are the
prototypical examples of such events, but are not the
only examples.

The exposure time is the length of time during which
the events could possibly occur.  In Example 2.1, the
exposure time is reactor-critical-years, because a
reactor trip can only occur when the reactor is at power.
Because only one plant is considered, “critical years”
can be used as  shorthand for “reactor-critical-years.”
In Example 2.2, the event of interest is LOSP during
shutdown, so the exposure time must be the number of
reactor-shutdown-years in the study period.  In Example
2.3, reactor-calendar-years are used, primarily because
more detailed worldwide data could not be easily
obtained.  The model therefore assumes that a crack in
large-diameter piping could occur with equal
probability during operation and during shutdown.  The
model also does not consider differences between
plants, such as differences in the total length of large-
diameter piping at a plant.  In Example 2.4, the
exposure time is the number of component-years,
because the components operate constantly.

The possible examples are endless.  The events could
be unplanned demands for a safety system, forced
outage events, or many other kinds of events that
resemble initiating events.
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The data given in the above examples are expressed in
the crudest summary terms:  a count of events in a total
exposure time.  This is sufficient for the simple model
of this section.  Section 2.5 will consider more sophist-
icated models using the exact event times.

The data could also be broken down into smaller
pieces.  For example, the initiating event data could be
summarized for each calendar year, with an event count
and an exposure time reported separately for each year
from 1987 through 1995.  This additional information
allows one to look for trends or other patterns, as
discussed in later chapters.

2.2.2 Probability Model

The assumptions concerning the physical process are
given here, along with a description of the kind of data
that can be observed.

It is standard to assume that the event count has a
Poisson distribution.  As listed in Section A.6.2, the
usual assumptions (following Thompson 1981) for a
Poisson process are:

1. The probability that an event will occur in any
specified short exposure time period is
approximately proportional to the length of the
time period.  In other words, there is a rate 8 > 0,
such that for any interval with short exposure time
)t the probability of an occurrence in the interval
is approximately 8 × )t.

2. Exactly simultaneous events do not occur.

3. Occurrences of events in disjoint exposure time
periods are statistically independent.

In addition, it is worthwhile to spell out the kind of data
that can be observed.

• A random number of events occur in some
prespecified, fixed time period.  As a minimum, the
total number of events and the corresponding time
period are observed.

Under the above assumptions, the number of
occurrences X in some fixed exposure time t is a
Poisson distributed random variable with mean : = 8t,

  . (2.1)Pr( ) / !X x e xx= = − µ µ

The probability distribution function (p.d.f.) is
sometimes used to abbreviate this: f(x) = Pr(X = x).

(Throughout this handbook, upper case letters are used
for random variables and lower case letters are used for
particular numbers.)

The parameter 8 is a rate or frequency.  To make
things more clear, the kind of event is often stated, that
is,  “initiating event rate” in Example 2.1, “through-
wall-crack occurrence frequency” in Example 2.3, and
so forth.  Because the count of events during a fixed
period is a unitless quantity, the mean number of
occurrences : is also unitless.  However, the rate 8
depends on the units for measuring time.  In other
words, the units of 8 are per unit of time, such as 1/year
or 1/reactor-critical-hour.

This model is called a Poisson process.  It is extremely
simple, because it is completely specified by the
exposure time, t, and the one unknown parameter, 8.
Assumption 1 implies that the rate 8 does not change
over time, neither with a monotonic trend, nor
cyclically, nor in any other way.  Assumption 2 says
that exactly simultaneous events do not occur.  The only
way that they could occur (other than by incredible
coincidence) is if some synchronizing mechanism exists
– a common cause.  Therefore, the operational
interpretation of Assumption 2 is that common-cause
events do not occur.  Assumption 3 says that the past
history does not affect the present.  In particular,
occurrence of an event yesterday does not make the
probability of another event tomorrow either more or
less likely.  This says that the events do not tend to
occur in clusters, but nor do they tend to be
systematically spaced and evenly separated.

As stated above, a common cause that synchronizes
events violates Assumption 2.  However, some
common-cause mechanisms do not exactly synchronize
the events.  Instead, the second event may occur very
soon after the first, as a slightly delayed result of the
common cause.  In this case, Assumption 3 is violated,
because the occurrence of one event increases the
probability of a second event soon after.  One way or
the other, however, common-cause events violate the
assumptions of a Poisson process, by violating either
Assumption 2 or Assumption 3.

2.2.3 Data Needed to Validate the Model
and Estimate 8 

Suppose that the Poisson model holds.  Then any
reasonable estimator of 8 needs only two pieces of
information: the total exposure time, t, in the data
period, and the number of events, x, that occurred then.
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However, more information is needed to investigate
whether the Poisson model is valid.  For example, the
data might cover a number of years or a number of
plants, and 8 might not be constant over time or the
same at all plants.  These possibilities are not allowed
by the listed model assumptions.  To study whether they
occur, the times and locations of the initiating events
should be recorded, or at  least the data should be
partitioned into subsets, for example corresponding to
plants or years.  Then the event count and exposure
time, xi and ti, should be given for each subset.

2.2.4 Case Studies: Validity of Model
Assumptions in Examples

Let us examine the reasonableness of the Poisson model
assumptions for Examples 2.1 through 2.4.  Chapter 6
will address this issue by performing data analysis.
Here we will merely cite the results of published studies
and use critical thinking.

Example 2.1  Initiating Events

An initiating event is an event with the reactor critical,
causing an unplanned reactor trip.  Assume that any
time interval starts on some date at some time and
ends on some date at some time, and that the length
of the interval, )t, is the number of critical years
contained between the start and stop of the time
interval.  For example, if the time period is two 24-
hour days and the reactor was critical for half of that
time, then )t = 1/365 critical years.

Assumption 1 is violated in two ways.  First, in the
industry as a whole, and presumably in individual
plants, the probability of an initiating event in an
interval of length )t (such as one critical day) has not
been constant.  Instead, the probability dropped
substantially from 1987 to 1995.  Equivalently, the
event rate, 8, dropped from 1987 to 1995. This
violation can be eliminated by considering only a
short time period for the study, such as one calendar
year instead of nine years.  If, however, the whole
nine-year period is of interest, a more complicated
model must be used, such as one of the trend
models described in Chapter 7.

A second violation of Assumption 1 arises because
this particular plant was new at the start of the study
period, with initial criticality on January 3, 1987, and
commercial start on May 2, 1987.  Many new plants
seem to experience a learning period for initiating
events, and this plant had 15 of its 34 initiating
events during the first six months of 1987.  After that
initial period with a high event rate, the event rate
dropped sharply.  This violation of Assumption 1 can
be resolved by eliminating data before the plant
reached a certain age.  That is, not counting either

the operating time or the initiating events from the
plant until it has reached a certain age — excluding
that portion of the plant’s history from the universe
being studied.

Assumption 2 says that exactly simultaneous
initiating events do not occur.  This is reasonable for
events at a single plant.

Assumption 3 says that the probability of an initiating
event in one time period does not depend on the
presence or absence of an initiating event in any
earlier time period.  This assumption may be
challenged if the plant personnel learn from the first
event, thus reducing the probability of a second
event.  This kind of dependence of one event on
another is not allowed by Assumption 3.  Suppose,
however, that the learning is modeled as a general
kind of learning, so that the event rate decreases
over time but not as a clear result of any particular
event(s).  This may justify using a Poisson model
with a trend in the event rate, as considered in detail
in Chapter 7.

There is a length of time when the reactor is down
after a reactor trip when an initiating event cannot
possibly occur.  This does not violate Assumption 3
because during that time the plant has dropped out
of the study.  Its shutdown hours are not counted in
the exposure time.  Only when the reactor comes up
again does it begin contributing hours of exposure
time and possible initiating events.

Example 2.2  Shutdown LOSP

Just as with the previous example, consider the three
assumptions of the Poisson model.  In this case,
because data come from the entire industry, 8 is
interpreted as the average rate for the entire industry.

First consider Assumption 1.  The report that
analyzed this data (Atwood et al. 1998) found no
evidence of a trend in the time period 1980 through
1996.  It did find evidence of differences between
plants, however.  These differences can affect the
industry average, because plants enter the study
when they start up and leave the study when they
are decommissioned.  When a plant with an
especially high or low event rate enters or leaves the
study, this will affect the industry average.  However,
the event rate at the worst plant differed from the
industry average by only a factor of about 3.4, and
the best plant differed from the average by less than
that.  Many plants (116) were considered.  Therefore,
the effect of a single plant’s startup or
decommissioning should be small.  Therefore, it
appears that the overall industry event rate was
approximately constant, as required by Assumption
1.
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Assumption 2 rules out exactly simultaneous events.
In this example, however, events at sister units at a
single site are somewhat dependent, because a
common cause can result in LOSP events that are
simultaneous or nearly simultaneous at both units.

Of the 80 events in the data, two pairs of events
occurred together at sister units, each pair from a
common cause.  Thus, simultaneous events do
occur, but they are not frequent.  This departure from
Assumption 2 is probably not large enough to be
serious.

Assumption 3 requires statistical independence of
the number of events in disjoint time intervals.  As
with Example 2.1, there may be some learning,
although the lack of trend indicates that any learning
is minimal.

In summary, the assumptions for the Poisson model
seem to be approximately satisfied.

Example 2.3  Through-Wall Leaks

This differs from the other examples in that the
number of events is very small.  Any departures from
the Poisson assumptions cannot be seen in the data,
because so few events have occurred.  With no
theoretical reason to postulate a trend or other
nonconstancy, or a high rate of multiple events, or
dependence between events, we accept the Poisson
assumptions.  The assumptions may not be perfectly
true, and a different model may be more accurate,
but the Poisson model is simple, and good enough
for analyzing such a sparse data set.

Example 2.4  Temperature Sensor/Transmitters

A report by Eide et al. (1999a) divides the total study
time for instrumentation failures into two halves, and
finds a difference between 8 in 1984-1989 and 8 in
1990-1995.  The example here is for 1990-1995 only.
Within this time period the report does not see strong
evidence of a trend.  That is, a small trend may be
present, but the time period is too short, and the
failures too few, for any trend to be clear.  Further,
because the components are regularly maintained, it
is reasonable to assume that the failure rate, 8, is
roughly constant, as required by Assumption 1.  

Assumption 2 requires that common-cause failures
be negligible.  However, the report states that 14 of
the 32 component failures occurred during four
common-cause events.  Thus, Assumption 2 is
seriously violated.

Finally, Assumption 3 requires independence of the
number of events in disjoint time intervals.  The
report does not address this issue, but independence
appears plausible.

In summary, the example violates Assumption 2, but
probably satisfies the other two assumptions.  One
way to deal with the violation of Assumption 2 would
be to model the independent failures and the
common-cause failures separately, although Eide et
al. do not do this.

2.2.5 Discussion

2.2.5.1 More General Models

The model considered thus far is a homogeneous
Poisson process (HPP), which has a constant event
occurrence rate, 8.  The number of events in time t is a
Poisson random variable with parameter : = 8t.  A
generalization is a  nonhomogeneous Poisson process
(NHPP), in which 8 is a function of t.  Such a model is
useful for analyzing trends.  Chapter 6 includes ways to
test the assumptions of a homogeneous Poisson process,
and Chapter 7 includes ways to analyze data where a
trend is present.

When data come from the industry, one may consider
the differences between plants.  Ways to model such
differences are discussed in Chapter 8 of this handbook.
The present chapter’s interest is restricted to 8 when no
such variation is present.  Of course, if the data come
from only one plant, 8 refers to that plant and the issue
of differences typically does not arise.

Any mathematical model, such as the model for a
homogeneous Poisson process given here, is an
imperfect approximation of the true process that
generated the data.  Data are used to validate or refute
the adequacy of the model.  The data set may be sparse
— in the present context, this means that the data set
contains few events.  In this case, two consequences
typically result:  (a) it is difficult or impossible to see
evidence of departures from the model, and (b) the data
set contains too little information to allow realistic
estimation of the parameters of a more complicated
model.  If, instead, the data set has many events,
departures from the model become visible, and typically
a more complicated model is appropriate.  These
statements have been illustrated by the small and large
data sets given as examples.

2.2.5.2 Non-randomness of t

In the model considered here, the exposure time is
treated as fixed, and the number of events is treated as
random.  This is a common type of data found in PRA
work.  Sometimes, however, a fixed number of events
is specified by the data collector, and the corresponding
total time is random, as in the following two examples.
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One example occurs when equipment is tested until it
fails.  That is, a predetermined number of items are
tested, say x items.  Each item is run until it fails, and
the total running time of the items is random.  The
second example occurs in a PRA context if the analyst
thinks that the event frequency has changed over time
and that only the recent history fully represents current
conditions.  The analyst may then decide to consider
only the most recent events.  If there are four recent
events, x is fixed at 4, and the corresponding time,
measured backwards from the present to the 4th event
in the past, is random.

These are examples of duration data with
exponentially distributed durations, discussed in
Section 2.5.  The probability model is the Poisson
process presented above, but the data collection, and
resulting data analysis, are different.  Because the time
t until the xth event can be called a waiting time, these
models are also sometimes called waiting time models.

2.3 Failure to Change State

This section considers two probability models, in
Subsections 2.3.2 and 2.3.3.  First, however, example
data sets are given.

2.3.1 Examples

Here are four examples of failure to change state, three
with failure to start and one with failure to close.

Example 2.5 HPCI failures to start

At 23 BWRs in the 1987-1993 time period, the high
pressure coolant injection (HPCI) system had 59
unplanned attempts to start. The system failed to
start on 5 of these demands (Grant et al. 1999a).
The failures were typically erratic starts, which the
operator stabilized manually.  These demands
occurred during 113.94 reactor-critical-years.

Example 2.6 EDG failures to start

Emergency diesel generators (EDGs) are
sometimes demanded because of unplanned loss of
power to a safety bus, and they are also tested
periodically, with one set of tests during each
operating cycle and another set of tests monthly.  In
addition, a return-to-service test is normally
performed after maintenance of an EDG.  At one
plant over an 18-month time period, the number of
such demands is counted, and the number of
failures to start is counted. 

Example 2.7 Steam binding in AFW

Between demands, steam binding can develop in
the AFW system, so that one or more pumps cannot
function when demanded.  This is mentioned by
Wheeler et al. (1989), and by Nickolaus et al.
(1992).

Example 2.8 Failures of isolation valves

Nickolaus et al. (1992) review the causes of about
45 failures of air-operated and motor-operated
isolation valves.  Some of the principal causes are
corrosion, instrument drift, and moisture in
instrument and control circuits.  Other causes
include contamination and corrosion products in the
instrument air system, and debris in the system.
These are all conditions that can develop while the
valves are not being used.

2.3.2 Failure on Demand

All these examples involve a number of demands and a
number of failures, where the terms “demand” and
“failure” can be defined according to the purposes of
the study.  Non-PRA contexts provide many other
examples of failures on demand.  A simple example in
elementary probability or statistics courses is tossing a
coin n times, and counting the number of heads.  Count
either a head or a tail as a “failure.”  Just as in the PRA
examples, this example has a number of demands, with
a random number of the demands resulting in failures.

2.3.2.1 Probability Model

The standard model for such data assumes that the
number of failures has a binomial distribution.  The
assumptions are listed in Appendix A.6.1.  These
assumptions can be restated as two assumptions about
the physical process and one about the observable data:

1. On each demand, the outcome is a failure with
some probability p, and a success with probability
1 ! p.  This probability p is the same for all
demands.

2. Occurrences of failures for different demands are
statistically independent; that is, the probability of
a failure on one demand is not affected by what
happens on other demands.

The following kind of data can be observed:
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• A random number of failures occur during some
fixed, prespecified number of demands.  As a
minimum, the total number of failures and number
of demands are observed.

Under these assumptions, the random number of
failures, X, in some fixed number of demands, n, has a
binomial (n, p) distribution.
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This distribution has two parameters, n and p, of which
only the second is unknown.  (Although n may not
always be known exactly, it is treated as known in this
handbook.  Lack of perfect knowledge of n, and other
uncertainties in the data, are discussed briefly in Section
6.1.3.2)

2.3.2.2 Data Needed to Validate the Model and
Estimate p

Suppose that the binomial model is appropriate.  Then
any reasonable estimator of p needs only two pieces of
information: the number of demands, n, in the data
period, and the number of failures, x, that then
occurred.

However, more information is needed to investigate
whether the binomial model is valid.  For example,
Assumption 1 assumes that p is the same on all
demands.  If the data cover a number of years or a
number of systems or plants, p might not be constant
over time or the same at all systems or plants.  To study
whether this is true, the times and locations of the
demands and failures should be recorded, or at  least the
data should be partitioned into subsets, for example
corresponding to systems, plants, or years.  Then the
failure and demand counts, xi and ni, should be given
for each subset.

2.3.2.3 Case Studies: Validity of Model
Assumptions in Examples

Let us examine Examples 2.5 through 2.8 to see if the
assumptions appear to be valid.

Example 2.5  HPCI Failures to Start

Assumption 1 says that the probability of failure on
demand is the same for every demand.  If data are
collected over a long time period, this assumption
requires that the failure probability does not change.
Likewise, if the data are collected from various
plants, the assumption is that p is the same at all
plants.

In the HPCI example, the five failures do not reveal
any clear trend in time.  However, one Licensee
Event Report (LER) mentions that a better-designed
switch had already been ordered before the HPCI
failure.  This gives some evidence of a gradual
improvement in the HPCI system, which might be
visible with more data.

As for differences between plants, it happens that
three of the five failures occurred at a single plant.
Therefore, it might be wise to analyze that one plant
(three failures in nine demands) separately from the
rest of the industry (two failures in 50 demands).  In
fact, Grant et al. (1995) did not analyze the data that
way, because they considered two types of failure to
start, and they also considered additional data from
full system tests performed once per operating cycle.
However, the high failure probability for the one plant
was recognized in the published analysis.

Assumption 2 says that the outcome of one demand
does not influence the outcomes of later demands.
Presumably, events at one plant have little effect on
events at a different plant.  However,  the experience
of one failure might cause a change in procedures or
design that reduces the failure probability on later
demands at the same plant.  One of the five LERs
mentions a permanent corrective action as a result of
the HPCI failure, a change of piping to allow faster
throttling.  This shows some evidence of dependence
of later outcomes on an earlier outcome at that plant.

Example 2.6  EDG Failures to Start

Assumption 1 says that every demand has the same
probability, p, of failure.  This is certainly not true for
return-to-service tests, because such tests are
guaranteed to result in success.  If the EDG does not
start on the test, maintenance is resumed and the
test is regarded as a part of the maintenance, not as
a return-to-service test.  Therefore, any return-to-
service tests should not be used with the rest of the
data.

As for the other demands, one must  decide whether
the unplanned demands, operating-cycle tests, and
monthly tests are similar enough to have the same
value of p.  Can plant personnel warm up or
otherwise prime the diesel before the test?  Can an
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operator stop the test if the EDG is clearly having
trouble, and then not consider the event as a test?
If so, the different types of demands do not have the
same p, and they should not be analyzed as one
data set.  For PRA purposes, one is normally most
interested in the failure probability on an actual un-
planned demand.  To estimate this, one should use
only data from unplanned demands and from tests
that closely mimic unplanned demands.

If the EDGs in the data set differ in some way, such
as having different manufacturers, this may also lead
to different values of p on different demands.
Analyzing the data while ignoring differences
between the individual EDGs will allow us to estimate
the average p, corresponding to failure to start for a
random EDG.  However, this average p is not the
same as the p for a particular EDG.

Assumption 2 says that the outcome on one demand
does not affect the probability of failure on a different
demand.  When the plant is very new there may be
some learning from individual failures, but when the
plant is mature, failure or success on one demand
should not change the chances of failure or success
on later demands.  The only way for such
dependence to arise is if the first failure results from
a common cause.  If the plant is mature and
common-cause failures are rare, then Assumption 2
is approximately satisfied.

Example 2.7  Steam binding in AFW

Assumption 1 says that every demand corresponds
to the same probability of failure.  If the steam comes
from backflow through a check valve, it will build up,
and become more of a problem when the AFW
system has been unattended longer.  Technically,
this is a violation of Assumption 1.  However,
ignoring the differences between demands results in
estimating p for an average demand, and this may be
adequate for many purposes.

Assumption 2 says that the AFW pumps fail
independently of each other.  However, steam-
binding of the AFW system was a recognized
common-cause mechanism in the 1970s and 1980s.
This means that Assumption 2 may be plausible if
interest is in the performance of a single AFW pump,
but not if interest is in an interconnected set of
pumps.

Section D-1 of Poloski et al. (1998) says that steam
binding has not been seen in 1987-1995 AFW
experience.  Therefore, Example 2.7 is probably no
longer relevant, although it received great attention
at one time.

Example 2.8  Failures of isolation valves

The causes of valve failures postulated in this
example are degradations, so the probability of
failure increases over time, violating Assumption 1.
If failures from such causes are rare, then the
increase in failure probability may not be a problem.
In general, ignoring the differences results in
estimating an average p, averaged over components
that have been allowed to degrade for different
amounts of time.  This may be acceptable.

As in Example 2.7, some of the mechanisms for
valve failure are common causes, violating the inde-
pendence required by Assumption 2.  The
seriousness of the violation depends on how many
multiple failures occur.

2.3.2.4 Discussion

2.3.2.4.1 More General Models

The model considered above has a constant failure
probability, p.  A generalization would let p be a
function of time.  Such a model is useful for analyzing
trends.  Chapter 6 includes ways to test the assumptions
of the model assumed above, and Chapter 7 includes
ways to analyze data where a trend is present.

When data come from the industry, one might consider
the differences between plants, just as for initiating
events.  Ways to model such differences are discussed
in Chapter 8.  The present section’s interest is restricted
to p for the industry as a whole, the average of all the
plants.  Of course, if the data come from only one plant,
p refers to that plant and the issue of differences
typically does not arise.

Any mathematical model is an imperfect approximation
of the true process that generated the data.  When the
data set is sparse (few demands, or few or no failures,
or few or no successes), (a) it is difficult or impossible
to see evidence of departures from the model, and (b)
the data set is too small to allow realistic estimation of
the parameters of a more complicated model.  When the
data set has many events, departures from the model
become visible, and a more complicated model may be
appropriate.

2.3.2.4.2 Non-randomness of n

One could argue that the numbers of demands in the
examples are not really fixed in advance.  That is, no
one decided in advance to look at the outcomes of 59
unplanned HPCI demands.  Instead, Grant et al.
decided to look at seven years of data from 23 plants,
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and they observed that 59 demands had taken place.
The response to this argument is that we are actually
conditioning on the number of demands, that is, dealing
with conditional probabilities assuming that 59
demands take place.  Conditioning on the number of
demands enables us to focus on the quantity of interest,
p.  Treating both the number of failures and the number
of demands as random is needlessly complicated, and
yields essentially the same conclusions about p as do
the simpler methods in this handbook.

In the model considered here, the number of demands
is treated as fixed, and the number of failures is treated
as random.  Sometimes, however, the number of
failures is specified in advance and the corresponding
number of demands is random.  For example, the
analyst may believe that p has been changing, and that
only the most recent history is relevant.  In this case, the
analyst might decide to consider only the most recent
failures and to treat the corresponding number of
demands as random.  For example, if only the four most
recent failures are included, one would count
backwards from the present until x = 4 failures were
seen in the plant records, and record the corresponding
number of demands, n, regarded as an observation of a
random variable.  This is a waiting time model, with n
equal to the waiting time until the 4th failure.  Bayesian
analysis of such data is discussed briefly in Section
6.3.2.6.

2.3.3 Standby Failure

As stated in the introduction to this chapter, failure to
change state can be modeled in two ways.  One way
was given in Section 2.3.2.  The second way is given
here, in which the system (typically a component) is
assumed to transform to the failed state while the
system is in standby.  This transition occurs at a random
time with a constant transition rate.  The latent failed
condition ensures that the system will fail when it is
next demanded, but the condition is not discovered until
the next inspection, test, or actual demand.

2.3.3.1 Probability Model

The underlying assumption is that the transition to the
failed condition occurs randomly in time.  Two settings
must be distinguished:

1. the data, the operational experiences in the past
that allow us to estimate 8, and

2. the application to PRA, in which the estimate of 8
is used to estimate the probability that a component
will fail when demanded.

These two settings are discussed in the next two
subsections.

2.3.3.1.1 Probability Model for the Data
 
It is customary to consider only the simplest model.   

1. Assuming that the system is operable at time t, the
probability that the system will fail during a short
time period from t to t + )t is approximately
proportional to the length of the exposure period,
)t.  The probability does not depend on the
starting time of the period, t, or on anything else.

2. Failures of distinct systems, or of one system
during distinct standby periods, are independent of
each other.

The kind of observable data is spelled out here.  It is
obvious, but is written down here for later comparison
with the data for similar models.

• At times unrelated to the state of the system, the
condition of each system (failed or not) can be
observed.  As a minimum, the total number of
failures and the corresponding total standby time
are observed.

The times mentioned here can be scheduled tests or
unplanned demands.

Assumption 1 is essentially the same as for a Poisson
process in Section 2.2.2.  It implies that there is a
proportionality constant, 8, satisfying

8)t . Pr(t < T # t + )t * T > t),

where T is the random time when the system becomes
failed.  Then the probability that the system is failed
when observed at time t is

Pr(system is in failed state at time t) = 1 ! e!8t . (2.3)

This follows from Equation 2.6, given in Section 2.5 for
the exponential distribution.  The parameter 8 is called
the standby failure rate.  It is so named because the
failed condition develops while the system is in
standby, waiting for the next demand.

2.3.3.1.2 Application of the Model to PRA
 
The model is used to evaluate the probability of failure
on an unplanned demand.  For this, one assumes that
there are periodic tests and the unplanned demand
occurs at a random time within the testing cycle.  Then
the probability of failure on demand is approximated by
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p . 8ttest/2  , (2.4)

where 8 is the standby failure rate and ttest is the time
interval between tests.

A more accurate expression is the average of terms
from Equation 2.3, averaging over all the possible
demand times in the test interval:
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This equation is approximated by Equation 2.4, as can
be verified by use of the second-order Taylor
expansion:

exp(!8t) . 1 + (!8t) + (!8t)2/2! . 

When more than one system is considered, the formulas
become more complicated.  For example, suppose that
two systems (such as two pumps) are tested periodically
and at essentially the same time.  Suppose that we are
interested in the event that both fail on an unplanned
demand.  This is:

Pr(both fail)
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When more systems are involved, or when testing is
staggered, the same ideas can be applied.

2.3.3.2 Data Needed to Validate the Model and
Estimate 8

Suppose that the standby failure rate model holds.  If
the standby times are all similar, then an estimator of 8
needs only two pieces of information:  the number of
failures, x, in the data period, and the corresponding
total standby time, t.  If, instead, the standby times vary
substantially, then the total standby times should be
recorded separately for the failures and the successes,
as explained in Section 6.4.

To validate the model, the data could be partitioned.
As with initiating events, if the data come from various
years or plants, the data could be partitioned by year
and/or by plant, and  the above information should be
given for each subset.

2.3.3.3 Case Studies: Validity of Model
Assumptions in Examples

Let us now examine the applicability of the model
assumptions in the examples given above.  Much of the
discussion in Section 2.3.2.3 applies here as well.  In
particular, when Section 2.3.2.3 sees a violation of an
assumption and suggests a remedy, an analogous
violation is probably present here, with an analogous
remedy.

Example 2.5  HPCI Failures to Start

Assumption 1 says that the probability of becoming
failed in a short time period is proportional to the
length of the time period, and on nothing else.  As
discussed in Section 2.3.2.3, there is no clear
evidence of a trend in time.  It may be, however, that
the probability of failure is higher at one plant than at
the other plants.  If true, this would violate Assump-
tion 1, and suggests that the outlying plant be
analyzed separately from the others.

Assumption 2 says that failures in distinct time
periods and locations are independent of each other.
As discussed in Section 2.3.2.3, there may be a very
small amount of learning, causing fewer failures later
in the history.

Example 2.6  EDG Failures to Start

Assumption 1 says that the probability of becoming
failed in a short time period is proportional to the
length of the time period, and on nothing else.
Section 2.3.2.3 discusses different types of tests of
EDGs.  That discussion is applicable here as well.  If
an EDG fails on one type of test more readily than on
another type of test, Assumption 1 is violated.
Another interpretation of this situation is that the
bulleted assumption on the data is false: it is not true
that a failed condition is always discovered on a test.
Some tests discover only major failed conditions
while other, more demanding tests discover less
obvious failed conditions.  Just as mentioned in
Section 2.3.2.3, if the primary interest is the
probability of failure on an unplanned demand then
one should use only data from unplanned demands
and from tests that closely mimic unplanned
demands. 

Assumption 2 says that failures in distinct time
periods and locations are independent of each other.
As discussed in Section 2.3.2.3, this is probably true
if the plant is mature and if common-cause failures
are rare.
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Example 2.7  Steam Binding in AFW
 
Assumption 1 says that the failed-condition event is
as likely to hit the system in one time interval as in
another of the same length.  As discussed in Section
2.3.2.3, steam binding can result from a gradual
buildup, and become more of a problem when the
AFW system has been unattended longer.  In this
case, Assumption 1 is violated.  Ignoring this fact is
equivalent to treating the average of AFW conditions.

As discussed in Section 2.3.2.3, steam binding is a
common-cause mechanism.  Therefore Assumption
2, independence of distinct AFW pumps, is violated.

Example 2.8  Failures of Isolation Valves
 
Just as discussed in Section 2.3.2.3, the causes
listed for Example 2.3 are degradations, violating
Assumption 1.  However, it may be acceptable to
ignore the changes over time, and estimation of an
average parameter 8.  Also, as discussed in Section
2.3.2.3, some of the mechanisms for valve failure are
common causes, violating the independence
required by Assumption 2.  The seriousness of the
violation depends on how many multiple failures
occur.  

2.3.4 Comparison of the Two Models for
Failure to Change State

Two models have been presented for failure to change
state, the failure-on-demand model and the standby-
failure model.  Several aspects of the models are
compared here.

2.3.4.1 Ease of Estimation

One great appeal of the standby-failure model is that the
analyst does not need knowledge of the number of
demands.  Standby time is normally much easier to
obtain than a count of demands.

2.3.4.2 Use in PRA Cut Sets

The two models differ in their application to cut sets in
a PRA model.  Consider failure of two redundant
components, each having the same probability of
failure.  When the failure-on-demand model is used, we
have

Pr(both fail) = p2 = [Pr(one fails)]2.

On the other hand, when the standby-failure model is
used and the two components are tested periodically at
the same time, with time t between tests, Equations 2.4

and 2.5 show that

Pr(one fails) . 8ttest/2

Pr(both fail) . (8ttest)
2/3

so that

Pr(both fail) … [Pr(one fails)]2.

This fact is often ignored.

2.3.4.3 Estimates Obtained

The two models can produce different estimates of
basic event probabilities.  For example, suppose that an
EDG is tested monthly by starting it.  In 100 monthly
tests, 2 failures have been seen.  A simple estimate of p,
the probability of failure on demand, is 2/100 = 0.02.
A simple estimate of 8, the standby failure rate, is
0.02/month.  Now suppose that a basic event in a PRA
is that the EDG fails to start, when demanded at a
random time.  Based on the estimate of p, the estimated
probability of the basic event is

Pr(EDG fails to start) = p . 0.02 .

Based on the estimate of 8 and Equation 2.4, the
estimated probability of the basic event is

Pr(EDG fails to start) . 8t/2
. (0.02/month)×(1 month)/2 = 0.01 .

The two models give estimates that differ by a factor
of two, with the failure-on-demand model being more
pessimistic than the standby-failure model.  The reason
is simple:  All, or virtually all, of the failures and
demands in the data occur at the end of test intervals.
However, unplanned demands might occur at any time
between tests.  The standby-failure model says that de-
mands soon after a successful test have smaller
probability of failure.  The failure-on-demand model
says that all demands have the same probability of
failure.

The differences can be more extreme.  For example,
suppose that two EDGs are tested monthly, and tested
at essentially the same time rather than in a staggered
way.  According to the failure-on-demand model, the
probability that both EDGs fail to start is p2, which is
estimated by (0.02)2.  On the other hand, according to
the standby-failure model, Equation (2.5) shows that the
same probability is approximately (8ttest)

2/3, which is
estimated by (0.02)2/3.  The two models give estimates
that differ by a factor of three.  More extreme examples
can be constructed.
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It might be mentioned that these numerical differences
between estimates disappear if only unplanned demands
are used in the data.  However, unplanned demands are
rare, and so most analysts prefer to use test data if
possible.

2.3.4.4 A Model Involving Both Terms

The model described next postulates two reasons for the
observed randomness of failures.

One reason for the randomness of failures is that
demands are not all equally stressful.  When a demand
occurs that is unusually harsh, the system will fail.
From the viewpoint of an outside observer, it appears
that failures just occur randomly with some probability
p, but the underlying cause is the variability in the
severity of the demands.

The other reason for randomness of the failures is that
the unattended system degrades, and becomes
inoperable at unpredictable times.  This is simplified in
the standby-failure model by supposing that the system
changes suddenly from perfectly operable to completely
failed, with these transitions occurring at random times.
This leads to the standby-failure model, with failure-
transition rate 8, and with probability of failure 8t at
time t after the last system restoration.
If just one of the two mechanisms described above is
considered, we are led to either the failure-on-demand
model or the standby-failure model.  It is possible,
however, to construct a model that involves both terms,
corresponding to the two kinds of variation.  In this
two-parameter model, the probability of failure is p + 8t
at time t after the last system restoration.  (For example,
see Section 5.2.10 of Samanta et al. 1994.)

Lofgren and Thaggard (1992) state “it is virtually
impossible to directly determine from work
maintenance record descriptions whether the
component has failed from standby or demand stress
causes.”  However, they look for patterns in data from
EDGs and motor-operated valves (MOVs) at a small
number of plants that use different test intervals.  Their
data suggest that the standby-failure-rate model is most
appropriate for MOV failures, and the two-parameter
model is best for EDGs.  

In a similar spirit, the T-Book (TUD Office and Pörn
Consulting, 2000) uses the two-parameter model for
many components.  The T-Book does not attempt to
identify which mechanism applies to which failures, but
instead estimates the two parameters from overall
patterns in the data.  Some of the resulting estimates

have large uncertainties; for example, at a typical plant
the estimate of p for EDG failure to start has an error
factor of about 13.  For components that cannot be
analyzed in this way, the T-Book uses the standby-
failure model.  For details, see Pörn (1990).

2.3.4.5 Choosing a Model

No consensus exists among PRA workers as to which
model is most advantageous.  In particular, the typical
mechanisms of failure are  not understood well enough
to justify a theoretical basis for a model.  Most current
work uses one of the two simple models given here:
failure on demand or standby failure.  Therefore, this
handbook presents only these two models.  The user
may choose between them.

2.4 Failure to Run during Mission

Aspects of this type of failure closely resemble the
initiating events of Section 2.2.  One important
difference is in the kind of data normally present.  The
difference is summarized here.

Example 2.4 of Section 2.2 is an example of continu-
ously running components (temperature sensor/trans-
mitters) that occasionally failed to run.  When a
component failed, it was repaired or replaced in a
relatively short time, and  resumed operation.  That is,
the component was repairable.  The present section
considers components or systems that do not run
continuously.  Instead, they are occasionally demanded
to start, and then to run for some mission time.  If they
fail during the mission, they are nonrepairable, that is,
they cannot be repaired or replaced quickly.  Two
points deserve clarification:

• Some failures may be recoverable.  They would
not be modeled as failures in the sense of causing
mission failure.  Unrecoverable failures cause
mission failure, however.

• Given enough time, almost any system can be
repaired.  During a mission, however, time is not
available.  Because the component or system
cannot be repaired within the time constraints, it is
called “nonrepairable.”

As stated earlier, the word system is used in this
handbook for any piece of hardware for which data are
taken.  In particular, components and trains are kinds of
systems.
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2.4.1 Examples

Here are two examples of failures to run during
missions.

Example 2.9 EDG failures to run

Grant et al. (1999b) report that in 844 demands of
30 minutes or more for EDGs to run, there were
approximately 11 unrecovered failures to run in
the first 30 minutes.  The count is approximate
because a few failure times were not given and
had to be inferred.

Example 2.10 AFW turbine train failures to run

Poloski et al. (1998) report that in 583 unplanned
demands of AFW system turbine trains, the train
failed to run 2 times, and the total running time
was 371 train-hours.  The information is taken
from LERs, only 17% of which report running
times for the train.  The total running time of 371
hours is an extrapolation from the LERs with
reported run times.

These examples are typical, in that hardly any of the
demands to run resulted in a failure.  Therefore, for
most demands the time when failure would eventually
have occurred is unknown.

2.4.2 Probability Model

In principle, the times to failure are durations.
Section 2.5 deals with duration data, in the context of
recovery times.  That section mentions various possible
distributions of time to failure, of which the simplest is
the exponential distribution.

Data for this section differ from data of Section 2.5,
however, because nearly all of the observed times in
this section are truncated before failure.  This is
illustrated by the above examples.  Therefore, the full
distribution of the time to failure cannot be observed.
In Example 2.9, no information is given about the
distribution of failures times after the first 30 minutes.
In Example 2.10, the average run time was only 38
minutes, and most AFW missions lasted for less than
one hour.  In such cases the exponential distribution,
restricted to the observed time period, is a simple,
reasonable approximation of the observable portion of
the distribution.

Two assumptions are made concerning the physical
process:

1. Assuming that no failure has occurred by time t,
the probability that a failure will occur in a short
time period t to t + )t is approximately propor-
tional to the length of the exposure period, )t.  The
probability does not depend on the starting time of
the period, t, or on anything else.

2. Failures of distinct systems, or of one system
during distinct missions, are independent of each
other.

The kind of observable data is as follows:
  
• For each observed mission, the run time is

observable.  Also, it is known whether the run
terminated in failure or in successful completion of
the mission.  As a minimum, the total run time and
the number of failures to run are observed.

Assumption 1 implies that the time to failure is
exponentially distributed with parameter 8.  The inter-
pretation of 8 is that if the system is running, the
probability of failure in the next short interval of length
)t is approximately  8)t.  That is

8)t . Pr(t < T # t + )t * T > t),

where T is the random time until failure.  When defined
this way, 8 is sometimes called the failure rate, or rate
of failure to run.  Many authors use the term hazard
rate, denoted by h, and discussed in Appendix A.4.4.
Note, the definition of 8 is different for repairable
systems (Section 2.2) and nonrepairable systems (the
present section), even though it is represented by the
same Greek letter and is called “failure rate” in both
cases.  See Thompson (1981) for a reasonably clear
discussion of the subtle differences, and the glossary of
this handbook for a summary of the definitions.  The
topic is discussed further in Appendix A.4.4.

It is instructive to compare the models for failure to run
and standby failure.  The physical process is essentially
identical, but the observable data differs in the two
models.  That is, Assumptions 1 and 2 in the two
sections agree except for small differences of wording.
However, the time of failure to run is observable,
whereas the time of transition to a standby failure is
never known.

It may also be somewhat instructive to compare the
Assumptions 1 and 2 here with the Assumptions 1-3 of
the Poisson process in Section 2.2.2.  For the standby-
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failure model and the failure-to-run model, Assump-
tions 1 and 2 do not explicitly include an assumption
ruling out simultaneous failures.  The reason is that
simultaneous failures are ruled out by the other two
assumptions:  it is not meaningful for a system to fail
twice simultaneously; and distinct systems are assumed
to fail independently of each other, and therefore not
exactly simultaneously.

2.4.3 Data Needed to Validate the Model
and Estimate 8

Suppose that the time to failure has an exponential
distribution.  Then, any reasonable estimator of 8 needs
only two pieces of information: the total running  time,
t, in the data period, and the number of failures to run,
x, that occurred then.

However, more information is needed to investigate
whether the exponential distribution is valid.  Assump-
tion 1 says that 8 is constant during the mission.  To
investigate this, the analyst should know the failure
times, that is, how long the failed pumps ran before
failing.  The analyst should also know the mission
times, that is, how long the system ran when it did not
fail; often, however, this information is not recorded
and can only be estimated or approximated.

Implicit in Assumption 1 is that 8 is the same over all
the years of data, at all the plants where the data were
collected.  To investigate this, the data should be
divided into subsets, corresponding to the different
plants and years.  Then the failure count and running
time, xi and ti, should be given for each subset.   This is
the exact analogue of what was said in Section 2.2.3 for
initiating events.

2.4.4 Case Studies: Validity of Model
Assumptions in Examples

Consider now whether the assumptions of the model are
plausible for the two examples.

Example 2.9  EDG Failures to Run

Assumption 1 says that a running EDG is as likely to
fail in one short time interval as in any other time
interval of the same length.  That is, the EDG does
not experience burn-in or wear-out failures.  The
reference report (Grant et al. 1999b) says that this is
not true over a 24-hr mission.  Indeed, that report
divides the EDG mission into three time periods (first
half hour, from one-half hour to 14 hours, and from

14 to 24 hours) to account for different failure rates
during different time periods.  Within the first half
hour, however, the data do not give reason for
believing that any short time interval is more likely to
have a failure than any other time interval.
Therefore, Assumption 1 can be accepted.

Assumption 2 is violated by common-cause failures.
It is also violated if a failure’s root cause is incorrectly
diagnosed, and persists on the next demand.  If
these two conditions are rare the assumption may be
an adequate approximation.  More subtle dependen-
cies are difficult to detect from data.

Example 2.10  AFW Turbine Train Failures to Run

Assumption 1 says that a running turbine train is as
likely to fail in one short time interval as in any other
time interval of the same length.  The data are too
sparse – only 2 observed failures – to confirm or
refute this assumption.  The data are also too sparse
to confirm or refute Assumption 2, although failures
in separate plants are virtually certain to be
independent.  In such a situation, it is common to
accept the simple model as adequate.  A more
complicated model is justified only when a larger
data set is available.

2.4.5 Discussion

The exponential time to failure can also be derived as
the time to first failure in a Poisson process of
Section 2.2.  This is possible because the time to first
failure and the times between subsequent failures are all
exponentially distributed when the failures follow a
Poisson process.  The present context is simpler,
however, because the process ends after the first event,
failure to run.  The Poisson-process assumptions about
hypothetical additional failures are irrelevant.

2.5 Recovery Times and Other
Random Duration Times

This section is about modeling of time data.  Often, a
measurement of interest is a random duration time, such
as the time required to return a failed system to service
or the lifetime of a piece of hardware.  The distinction
between random duration times here and events in time
in Sections 2.2 and 2.4 is that here the individual times
are measured on a continuous scale with units such as
minutes or hours, while the earlier data sets involve
discrete counts of the number of events occurring in a
total length of time.
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2.5.1 Examples

Here are some examples involving random duration
times.  They are only summarized here.  Actual exam-
ples, with lists of durations times, will be analyzed in
Chapter 6.

Example 2.11 Recovery times from loss of
offsite power

A plant occasionally loses offsite power.  When
this happens, the plant reports the time until
power is restored.  Atwood et al. (1998) present
such durations for LOSP events in 1980-1996.

Example 2.12 Repair times for turbine-driven
pumps

A turbine-driven pump must occasionally be taken
out of service for unplanned maintenance.  The
duration of time out of service for maintenance
may be extractable from maintenance records.

Example 2.13 Time to failure of a component

A typical power plant will have many individual
components such as compressors.  When a
component is put into service, it operates
intermittently until it fails to perform its required
function for some reason.  Høyland and Rausand
(1994) give an example of such data.

Example 2.14 Times to suppress fires

When a fire occurs in a nuclear power plant, the
time until the fire is suppressed is of interest.
Nowlen et al. (2002) report on analysis of such
suppression times.  One difficulty is that the time
of fire onset often is not exactly known.

Example 2.15 Gradual degradation until failure

Examples 2.7 (steam binding) and 2.8 (failure of
isolation valves) involve gradual degradation,
which builds up until the system is inoperable.
The time until the system is inoperable can be
modeled as a duration time.

The common element in these examples is a duration
time that varies in an unpredictable way.  In Examples
2.11 and 2.12, the recovery time is composed of several
factors such as the time to diagnose, perform and test

repairs, and the time to complete documentation
required before returning the plant to normal operating
conditions.  Example 2.13 is a failure-to-run example,
similar to those of Section 2.4.  This example differs
from that of Section 2.4, however, because here it is
assumed that virtually all of the times to failure are
recorded.  In Section 2.4, on the other hand, most of the
systems did not fail during the test period or operational
mission.  The severe truncation of the data in Section
2.4 meant that only a simple model could be
considered.  The more complete data here allows
analysis of a more complex model.  Example 2.14 is
complicated by the lack of exact knowledge of the
duration time.  Finally, Example 2.15 gives a realistic
conceptual way to model the gradual degradations
encountered in Section 2.3.1, although good data are
unobtainable.

All five examples involve a duration time that is
uncertain due to random factors.  Consequently, the
duration times are modeled as continuous random
variables.

2.5.2 Duration-Time Models

The duration, T, is random, following some probability
distribution.  Two assumptions are made about the
process:

1. Each duration is statistically independent of the
others, and

2. All the random durations come from the same
probability distribution.

The data description is simple:

• The individual durations are observable.  As a bare
minimum, the number of durations and the total
duration time are observed.

Assumptions 1 and 2 can be summarized by saying that
the durations are independent and identically
distributed.  Independence means that one duration
does not influence the probability of any other duration.
The assumption of identical distributions means that
each random duration is as likely as any other to be
long or short.   If the durations are from distinct
systems, the systems are assumed to be identical and to
act independently.  If the durations are in sequence, as
for a system that alternates being up and down, the
assumption implies that no learning or long-term aging
takes place, and that each repair restores the system to
a condition as good as new.  Such a process is called a
renewal process.
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Figure 2.1  Probability density function (p.d.f.) and
cumulative distribution function (c.d.f.).

The assumptions do not require a particular distribution
for the time between events.  The most important such
distributions in PRA applications are: 

• lognormal,
• exponential,
• Weibull, and
• gamma.

These distributions are summarized in Appendix A.7.
An important part of the data analysis consists of
deciding on the form (or several plausible forms) of the
distribution.  This will be discussed in Chapter 6.  For
now, we simply note that these and other distributions
are possible.

There are different ways to specify a probability
distribution, and the next material summarizes some of
the concepts: their definitions, how to interpret them,
and how they are related to each other.  The data-
analysis techniques of Chapter 6 will use these ways of
characterizing distributions.  The usual convention is to
denote the random variables using capital letters, T, and
observed times as lower case, t.  The letter T is used,
rather than some other letter such as X, because the
random quantities are times.  As seen from the
examples, the durations may be times to repair, times to
failure, or other times.  However, the concepts and
formulas are valid for any application.

The cumulative distribution function (c.d.f.) of a real-
valued random variable T is defined as

F(t) = Pr(T # t)

for all real numbers t.  The name is sometimes
abbreviated to distribution function.  The c.d.f. is the
probability that the random variable T will assume a
value that is less than or equal to t.  The c.d.f. is a
monotonically increasing function of t, with the limiting
properties F(0) = 0 and F(+4) = 1. [For random
variables that, unlike durations, can take negative
values, the limiting properties are F(!4) = 0 and F(+4)
= 1.  That general case has few applications in this
handbook.]

The distribution is commonly used to characterize the
lifetimes, or recovery times, or some other kind of
durations, of a whole population of systems.  The
population might be a large set of identical systems that
are operating in similar applications and with durations
that vary due to random influences.  F(t) is the fraction
of items that have durations t or less, in a hypothetical
infinite population.  

A related function, denoted by f(t), is called a
probability density function (p.d.f.) for a continuously
distributed positive-valued random variable T.  It is
related to the c.d.f. by

   andf t
d

dt
F t( ) ( )=

   .F t f u du
t

( ) ( )= ∫0

The variable u is a dummy variable of integration, and
t is the upper limit of the integral.  An example of a
p.d.f. and the associated c.d.f. are shown in Figure 2.1.

It follows that probabilities corresponding to
occurrences in a small interval of time are
approximately proportional to the p.d.f.,

Pr(t < T # t + )t) . f(t))t.

Therefore, the ordinate of a p.d.f. has units of
“probability density” and not probability (as for a
c.d.f.).  Thus, a p.d.f. determines how to assign
probability over small intervals of time.  Now consider
an arbitrary interval from a to b.  In this case we have

 .Pr( ) ( )a T b f t dt
a

b< ≤ = ∫

The simplest distribution is the exponential distribu-
tion.  It arises when Assumption 1 of Section 2.4.2 is
satisfied.  (That assumption is phrased as if T is a time
until failure.)  In that case, the probability distribution
is exponential, and determined by a single parameter, 8.
The p.d.f. and c.d.f. are given by 

f(t) = 8e!8t

F(t) = 1 ! e!8t . (2.6)
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When deriving the distribution mathematically from
Assumption 1, it is necessary to assume that F(0) = 0,
that is, failures at time 0 have zero probability.
Although not stated explicitly, this assumption is
implicit in the context of failure to run, because any
failures at time 0 would be counted as failures to start,
not failures to run.

2.5.3 Data Needed to Estimate
Distribution of Durations and
Validate Model

In general, a sample of observed durations is needed to
estimate the distribution of duration times.  These
durations must independent and identically distributed,
that is, they must be generated by a process satisfying
the two assumptions given at the beginning of Section
2.5.2.

The special case when the times are assumed to have an
exponential (8) distribution is simpler.  Only the
number of durations and the total duration time are
needed to estimate 8,.  However, the individual
durations are still needed to investigate whether the
distribution is exponential or of some other form.
Incidentally, when the distribution is assumed to be
exponential, the model given here differs from the
standby-failure model (Section 2.3.3.1.1) and from the
failure-to-run model (Section 2.4.2) only by the kind of
data that can be observed.

To validate whether the distribution is the same for all
the data, extra information should be recorded for each
duration, the relevant circumstances of each duration.
The circumstances of interest are those that might affect
the durations, such as time of the event, system
location, and system condition just before the event.

2.5.4 Case Studies:  Validity of Model
Assumptions in the Examples

Examples 2.11 through 2.13 all appear to satisfy the
assumptions of Section 2.5.2.  Example 2.14 also
does, except that the durations are not observed
exactly.

In each case, all the distributions come from some
distribution.  Discovering the form of that distribution
is a task for the data analyst.

One might ask whether the durations are statistically
independent.  For example, does a long repair time
for a turbine-driven pump add an extra benefit to the
pump, so that the next few repair times will be short?

One might also ask, for each example, whether the
durations all come from the same probability distribu-
tion.  For example, if the data cover a period of
years, has there been any long-term learning, so that
recovery times or repair times tend to be shorter than
at the start of the data period?  Are different
durations associated with different systems for the
turbine-driven pumps, with different causes of loss of
offsite power, or with different kinds of fires?

The above are questions that could be investigated
during the data analysis, if enough durations have
been observed.

Example 2.14 is complicated by lack of exact
measurements of the durations.  Bounds can be
given, and the analysis must be based on these
upper and lower bounds rather than on exact times.

Example 2.15 is different because the durations are
not observable at all.  It might be theoretically
interesting to model the time until the system is in a
failed condition as a duration, but there is no monitor
on the pump or valve that says, “At this time the
system just became inoperable.”  Therefore, the
durations are not directly observable, not even in
principle.  Therefore, the methods of this handbook
are not applicable to this example.

Fortunately, degradation mechanisms have become
minor contributors to risk.  When a degradation
mechanism is recognized as important, the natural
response is not to collect data to better estimate the
rate of degradation.  Instead, the natural response is
(a) to shorten the interval between preventive
maintenance activities, and so to identify and correct
incipient degradation, or (b) to modify the plant to
mitigate or eliminate the problem.  Examples are the
apparent elimination of steam-binding in AFW
pumps, mentioned above, and of intergranular stress
corrosion cracking (IGSCC) in BWR piping (Poloski
et al. 1999a, Appendix J).

2.6 Unavailability

This section considers test-and-maintenance
unavailability, corresponding to intentional removal of
the equipment from service for testing and/or
maintenance.  This section does not consider
unavailability resulting from the hardware being in an
unrecognized failed condition; that topic was treated in
Section 2.3.3.

The discussion here is presented in terms of trains,
although other hardware configurations, such as
individual components, could be considered equally
well.  A standby train, such as the single train of the
HPCI system or a motor-driven train of the AFW
system, is normally available if it should be demanded,
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Figure 2.2  Uptime and downtime status for one system.

but sometimes it is out of service for planned or
unplanned maintenance.  The event of a train being
unavailable is called an outage, and the length of time
when it is unavailable is called an outage time or out-
of-service time.  In a data set, the exposure time is the
time (e.g. number of hours) when the train should have
been available.  The unavailability is the long-term
ratio of outage time to exposure time – the fraction of
time that the system is out of service when it should be
available.  More precisely, the planned-maintenance
unavailability is the fraction of time that the system is
out of service for planned testing and maintenance, and
the unplanned-maintenance unavailability is defined
similarly.  In summary, outage times are random but the
unavailability is a parameter, an unknown constant,
denoted here by q.  Subscripts such as “planned” and
“unplanned” can be attached to q for clarity if needed.

2.6.1 Example

Example 2.16 CVC unavailability for test and
maintenance

Train outages of various durations occurred
during 15 calendar months at a plant with two
trains in the chemical and volume control (CVC)
system.  For each month, the outage durations
are given by Atwood and Engelhardt (2003).

A way to picture the status of a standby train or other
repairable system uses a state variable, defined as S(t)
= 1 if the system is up at time t, and S(t) = 0 if it is
down at time t.  A particular system history is illustrated
in Figure 2.2, from Engelhardt (1996).  This figure
shows when a particular system was operating (S = 1)
or shut down (S = 0).  A nominally identical system
would have a somewhat different history for the same
period, or the same system would have a different
history over a different time period of the same length.

As stated above, the long-term fraction of time when
the system is down is called the system unavailability.

2.6.2 Probability Model

The assumed underlying model is an alternating
renewal process.  At any point in time a system is in
one of two states: “up” or “down,” corresponding in our
application to being available or out of service.
Initially, the system is up, and it remains up for a
random time Y1; it then goes down, and stays down for
a random time Z1.  Then it then goes up for a time Y2,
and then down for a time Z2, and so forth.  The
assumptions needed for the data analysis methods in
Chapter 6 are the following:

1. The random variables Yi have one distribution that
is continuous with a finite mean, and so do the
random variables Zi.

2. All the random variables are independent of each
other

The sum of the down times, EZi, is the total outage time
in the data.  The sum of all the times, GYi + EZi, is the
exposure time – the time when the system should be
available.  Time when the system is not required to be
available is not counted in either the up time or the
down time.

Two kinds of data can be considered:

• Detailed data:  the onset time and duration of each
individual outage are recorded, as well as the total
time when the train should have been available;
and

• Summary data.  Data totals are given for
“reporting periods,” such as calendar months.  For
each reporting period, the total outage time and
exposure time are recorded.

Section 6.7 describes how to analyze both types of data.

2.6.3 Data Needed to Validate the Model
and Estimate q 

The unavailability, q, can be estimated from either kind
of data.  Enough data should be collected so that any
periodic, lengthy, planned outages are appropriately
represented – neither over-represented nor under-
represented.

In addition, if summary data are used, the methods
given in Chapter 6 combine reporting periods into
larger subsets of the data, at the very least so that the
aggregated subsets do not contain outage times of zero.
Therefore, a large enough set of summary data is
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needed so that it consists of at least two (as a bare
minimum) subsets of approximately equal exposure
time, with each subset containing nonzero outage time.

To validate the model, any information that might be
related to unavailability should be recorded.  For
example, if a motor-driven pump has most of its
scheduled maintenance during the plant’s refueling
outages, and the pump’s availability during shutdown is
of interest, then the data should indicate which outages
and exposure times correspond to reactor shutdown.
Separate analyses will probably need to be performed
for the time when the reactor is up and when the reactor
is down, to keep Assumption 1 from being violated.

2.6.4 Case Study: Validity of Model
Assumptions in Example

The ideas here are applicable to virtually any system,
with Example 2.16 being just one example.

The trains may undergo periodic, infrequent, lengthy
testing and maintenance, and less lengthy testing and
maintenance at more frequent intervals.  This
periodicity of planned maintenance means that
Assumption 2 cannot be exactly true.  The lengthiest
outages tend to be evenly spaced, not random as
assumed.  However, more realistic assumptions would
be very difficult to work with.

It seems plausible that this deterministic periodicity
should lead to conservative estimates.  That is, analysis
methods that assume pure randomness will tend to
overestimate the variance, so that the resulting
uncertainty in q is overestimated.  However, this
conjecture has not been carefully investigated, and the
15 months of data in Example 2.16, analyzed in Section
6.7, do not support the conjecture.

Assumption 1, on the other hand, is surely correct.  The
distributions are continuous, and it is inconceivable that
the durations for an operating power plant would have
infinite means.
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3.  COMPONENT FAILURE AND BOUNDARY DEFINITIONS

3.1 Failure Definitions

While the terms “faults” and “failures” are casually
used interchangeably, in the context of fault tree
analysis these terms have more distinct meanings.
Thus, for data analysis, it is necessary for one to
understand the distinctions.  Generally speaking, all
failures are faults, but not all faults are failures.  To put
it another way, failures comprise a subset of the larger
set of faults.  For probabilistic risk assessment (PRA)
purposes, failures are regarded as basic (and undesired)
events which:

• render a component, subsystem, or system
incapable of performing its intended function, 

• represents a basic fault tree input that is not
analyzed further, and 

• require numerical estimates if quantification is to
be performed. 

Faults, on the other hand, are higher order events
(representing the occurrence or existence of an
undesired state of a component or set of components)
which are analyzed further, and ultimately resolved into
their constituent failures (Breeding, Leahy, and Young
1985; ANS and IEEE 1983; and Vesely et al. 1981).

The failures modeled in PRA can have many causes or
mechanisms.  For example, failure of a motor-operated
valve (MOV) to open on demand can occur due to
physical problems with the valve (stem failure, disc
separation, etc.), problems with the motor operator
(motor failure, control circuit failure, breaker failure,
etc.), or due to loss of motive or control power.  In
addition, the MOV may be unavailable due to test or
maintenance on its constituent parts. As such, each
failure (i.e., basic event) is the sum of the contributions
from each piece-part included in the component
boundary.  Thus, it is critical to define what the
component boundary is in order to get the right data.

3.2 Component Boundary
Definitions

In order to collect failure data for components, it is
necessary to define component boundaries by
specifying the scope of each item to be considered as a
single entity.  The PRA model and the data collection
should be coordinated so that the boundaries of the

components are defined identically.  For example, all
pieces of an MOV are typically considered to be part of
a single “component” when collecting reliability data
even though the valve consists of various piece parts
(e.g., electric motor, gearbox, limit switches, torque
switches, reversing contacts and coils, stem, disc, valve
body, etc.) that may be separately identified in the plant
maintenance records.  PRAs typically do not model
failures of every switch, relay, or contact in a control
circuit of a pump because that type of detail is difficult
to obtain from the plant data.  Instead, failures of these
components are typically included with actual failures
of the pump to establish a pump failure rate.  

If generic data sources are used, it becomes the
responsibility of the analyst to ensure that the
component boundary definitions used in the generic
data source are compatible with the boundary
definitions used by the PRA being performed.  

Some typical examples of component boundaries are
shown in Table 3.l.  The boundaries of a component
should include all components specific to the
component.  However, the component boundary should
not include piece-parts that are shared with other
components modeled in the PRA. For example, the
component boundary for emergency-actuated valves
commonly includes the valve control circuit.  However,
the components needed to generate an actuation signal
that initiates multiple  components modeled in the PRA
should not be included as part of that specific valve
boundary.  Similarly, a diesel generator boundary will
typically include the fuel day tank but the fuel oil
transfer pumps are not included since they are required
for operation of all the plant’s diesel generators.

3.3 Failure Severity

The raw data for a specific component will contain
some events not relevant to the component failure
modes being analyzed.  These events can be screened
from further analysis.  Some of the events will be
component failures that should be included in the data
assessment.  The type of component failures will
determine how they are classified and subsequently
used to generate the required component failure data.

Component malfunction events are commonly classified
into one of the following three failure severity
categories:



Component Failure and Boundary Definitions

3-2

Table 3.1  Examples of component boundaries.

Component Component Boundary

Diesel
Generators

The diesel generator boundary includes the generator body, generator actuator, lubrication
system (local), fuel system (local), cooling components (local), startup air system, exhaust
and combustion air system, individual diesel generator control system, circuit breaker for
supply to safeguard buses and their associated local control circuit (coil, auxiliary contacts,
wiring, and control circuit contacts) with the exception of all the contacts and relays which
interact with other electrical or control systems.

Motor Pumps The pump boundary includes the pump body, motor/actuator, lubrication system cooling
components of the pump seals, the voltage supply breaker, and its associated local control
circuit (coil, auxiliary contacts, wiring, and control circuit contacts).

Turbine-Driven
Pumps

The turbine-driven pump boundary includes the pump body, turbine/actuator, lubrication
system (including pump), extractions, turbopump seal, cooling components, and local turbine
control system (speed). 

Motor-Operated
Valves

The valve boundary inc1udes the valve body, motor/actuator, the voltage supply breaker and   
its associated local open/close circuit (open/close switches, auxiliary and switch contacts, and
wiring and switch energization contacts).  

Air-Operated
Valves

The valve boundary includes the valve body, the air operator, associated solenoid-operated
valve, the power supply breaker or fuse for the solenoid valve, and its associated control
circuit (open/close switches and local auxiliary and switch contacts).

Fans The fan boundary includes the fan, the voltage supply breaker, and its associated control
circuit (open/close switches and local auxiliary and switch contacts).

Batteries The battery component boundary typically includes just the battery.  Battery chargers are
modeled as separate components.

Bus Circuit
Breakers

A bus circuit breaker boundary includes the breaker and its associated control circuit
(open/close switches and local auxiliary and switch contacts).

• catastrophic failures,
• degraded failures, and
• incipient failures.

A catastrophic (complete) failure is one that prevents
the component from performing its mission as defined
in the PRA (Whitehead 1993).  Catastrophic failures
require some kind of repair or replacement action on
the component in order to restore the component to
operability.  For example, a valve that fails to open due
to a valve operator mechanical failure is a catastrophic
failure.  

A degraded failure is such that a component can
perform its mission, but at less than the optimum
performance level (Whitehead et al. 1993).  An
incipient failure is such that there is no significant
degradation in performance but there are indications of

a developing fault (Whitehead et al. 1993).  The
difference between the two is generally a matter of
severity.  For example, an event involving pump shaft
vibration indicates possible damage to the pump
bearings.  Severe vibration may be considered as
degraded failure if the pump produces less than
maximum flow.  Shaft seizure or other failures could
occur within a few hours if the pump remains running
and thus would likely be removed from operation for
corrective maintenance.  In contrast, minor vibration
may not result in degraded flow.  This would thus be an
incipient failure.  The significance of this event is that
it also could result in removal of the pump from
operation for inspection, lubrication, or some other
corrective action.  Information about the types of
repairs made, the parts replaced, and the urgency of the
repairs often provides important insight about the
severity of these two types of component failures.
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Although both degraded and incipient failures will
typically lead to a corrective action, the corrective
action may or may not make the component unavailable
to perform its function.  For example, maintenance on
the operator of a valve that is normally open will not
lead to the unavailability of the valve if it is required to
be open for system operation.  This illustrates the
importance of ascertaining from event records the
modes of a component operation that a corrective action
would prevent.  

Sometimes the event information is so unclear and
incomplete that a definite classification of the severity
of a component malfunction event is not possible.  For
example, Mosleh and Apostolakis (1985) cites one
maintenance work request issued at a nuclear power
plant that described the problem as follows: “Check
valve RHR-V-1A is leaking badly.”  The maintenance
foreman’s description of the corrective action read:
“Fixed it, not leaking anymore!”  No further
information was available.  From the description given,
one cannot say for sure whether the leak was internal or
external, or whether it was large enough to result in
functional failure of the check valve.  

Unfortunately, the above example is not uncommon.
Descriptions of the malfunctions and repairs are often
very brief.  The data analyst, then, is faced with the
difficult task of deciding whether to call a malfunction
a failure or not.  The inability to distinguish between
severity levels of failures is particularly important as the
difference between the frequencies of catastrophic and
degraded modes of failures can be significant.
Therefore, in the absence of sufficient information, the
conservative assumption could be made that all such
events be recorded as catastrophic failures.
Unfortunately, conservative categorization of uncertain
events can lead to significantly higher failure rates.

Ultimately, the definition of failure from the system
analysis decides the classification of the data.  Thus, the
failure of a component must match the definition of the
failure as described in the PRA model.  A component
must fail to perform its function as defined in the
model.  For example, a  relief valve that opens at 1,115
psig instead of the required 1,110 psig is not failed,
although it may be described as failed by the governing
technical specifications, and a pump that delivers 645
gpm instead of the required 700 gpm is not failed if 645
gpm is sufficient for the function that it is required to
perform.
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4.  DATA SOURCES

Two types of data sources can be utilized to produce
the various parameter estimates that are needed in a
probabilistic risk assessment (PRA).  This chapter
identifies and discusses these two data sources.
Section  4.1 identifies and discusses plant-specific data
sources.  Section 4.2 does the same for generic data
sources.

4.1 Plant-Specific Data Sources

Use of plant-specific data in a PRA produces risk
estimates that reflect the actual plant experience.

The scope of a plant-specific data analysis is
determined by the events that are included in the PRA
models.  In general, plant-specific data are generally
reviewed for the following types of events:

1. The accident initiating events analyzed in the PRA.

2. The components included in system models
(generally fault trees). For components the
definition includes the component boundary and
failure mode.  For unavailabilities due to
maintenance or testing it is necessary to know
whether the unavailabilities are to be specified at
the component, segment, train, or system level.

3. Some recovery events included in the PRA models.
Although most recovery events are analyzed using
human reliability analysis, the probabilities of
some events can be based upon a review of
operating experience.

Once the data needs are identified, the sources of raw
data at the plant are identified.  In most cases, the
information needed may have to come from multiple
sources.  For example, identification of maintenance
events and their duration may come from a control
room log, but other sources such as maintenance work
requests may be required to determine other
information such as whether a component had
experienced a  catastrophic or degraded failure. 

There are many sources of raw data at a nuclear power
plant.  Different plants have different means of
recording information on initiating events and
component failure and maintenance events.  Since no
one source exists at a nuclear power plant that contains
all the necessary data, different sources must be

reviewed.  The ease in which the plant-specific data can
be interpreted and the subsequent quality of the
resulting parameter estimates are a function of how well
the plant personnel recorded the necessary information.

Basic requirements associated with raw data sources
and some typical sources of raw data available at
nuclear power plants are identified in the following
sections.

4.1.1 Requirements on Data Sources

There are a variety of data sources that exist at a plant
and can be used in a data analysis.  However, there are
some basic requirements that these raw data sources
should meet in order to be useful.  Some typical
requirements, some of which were suggested in EPRI
TR-100381 (EPRI 1992), are delineated below.

4.1.1.1 Initiating Events

For reports on initiating events it is essential to include
the status of those systems that would be impacted as a
result of the event.  This is typically not a problem since
the Licensee Event Report (LER) that is required to be
filed with the Nuclear Regulatory Commission (NRC)
following a plant trip usually contains this type of
information.  It is also common for utilities to generate
additional detailed trip reports that delineate the cause
and effects of the event.  Such reports need to specify
critical information needed for data analysis such as the
power level at the time of the plant trip and the
sequence of events, including the timing of individual
events.

4.1.1.2 Component Failures

For each event at a plant resulting in the unavailability
of a component, it is necessary that the raw data sources
identify the particular component or set of components
associated with the event.  In order to determine if a
specific event contributes to a particular component
failure mode or to an unavailability due to the
component being in maintenance (either preventive or
corrective), it is necessary to be able to distinguish
between different degrees of degradation or failure.
The event reports should therefore specify whether
maintenance was required and if the maintenance was
corrective or preventive.  If the component maintenance
is preventive there is generally no failure that initiates
the maintenance.
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If an event involves corrective maintenance,
information is required to allow determination of the
severity of the failure (see Section 3.3 for definitions of
event severity).  The ability to distinguish between
severity levels of failures is particularly important since
the difference between the frequencies of catastrophic
and degraded modes of failures can be significant.  In
addition, information is required to determine the
component in which the failure actually occurred and
the mode of failure.  Finally, it should be possible to
determine the time the component is unavailable during
each maintenance event. 

The data analysis may use plant data on component
unavailability that is being collected for other than PRA
purposes. The requirements for recording the data for
these other purposes may use definitions of severity and
failure modes that are different from the PRA
definitions. The definitions used for the data collection
programs should be determined and an appropriate
translation to the PRA basic events made.

4.1.1.3 Recovery Events

The information needed to estimate the probabilities
associated with recovering specific components or
systems from a failed state is similar to that needed for
component failures.  Specific information pertaining to
the type of failure experienced by the component or
system (e.g., fail to operate, fail to start, fail to run), the
number of repair occurrences, and the time required to
perform the repair is needed to produce component
repair probabilities.
 

4.1.2 Data Sources 

Data sources that can provide information for
determining the number of initiating events include:

• internal plant failure records (e.g., scram reports or
unusual event reports),

• operator logs,
• LERs, and
• monthly operating reports/Gray Book.

Some data sources that typically provide information on
the occurrence of component failures include:

• LERs,
• internal plant failure records (e.g., failure reports,

trouble reports, or unusual event reports),
• maintenance records (e.g., maintenance work

orders, work request records),

• plant logs (e.g., control room log, component
history logs), and

• data bases (e.g., Equipment Performance and
Information Exchange System/Nuclear Plant
Reliability Data System).

The evaluation of component failure rates also requires
the number of demands and operating time for the
components.  Sources of data for these parameters
include:

• monthly operating reports/Gray Book,
• component history logs,
• plant population lists,
• test procedures,
• plant operating procedures, and
• component demand or operating time counters

Repair information can be obtained from sources such
as:

• plant logs and
• maintenance work orders.

The type of information available in these sources and
their limitations are discussed in the following sections.

4.1.2.1 Regulatory Reports

All plants are required to submit LERs to the NRC for
all events meeting the 10 CFR 50.73 reporting criteria
presented in NUREG-1022 (NRC 2000a).  LERs deal
with significant events related to the plant, including
plant shutdowns required by the technical
specifications, multiple train failures, engineered safety
feature actuations, and conditions outside the design
basis or not covered by plant procedures.  An LER
includes an abstract that describes the major
occurrences during the event; the components, systems,
or human failures that contributed to the event; the
failure mode, mechanism, and effect of each failed
component; and an estimate of the elapsed time from
the discovery of the failure until  the safety system train
was returned to service.  A computerized search of LER
information is possible using the Sequence Coding and
Search System (SCSS) (Gallaher et al. 1984).

LERs generally provide a good description of the
causes of a reactor trip and subsequent events.
However, their value for obtaining component failure
data is very limited.  The reporting criteria are limited
to safety-related trains or system failures, and therefore
LERs are not generally submitted for all failures.
Furthermore, LERs may not be submitted for every
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safety-related component failure since individual
component failures do not have to be reported if
redundant equipment in the same system was operable
and available to perform the safety function.  The
reporting criteria for LERs are also subject to
interpretation by the persons generating the reports and
thus can lead to inconsistencies in the LER data base.
Furthermore, there are other perceived deficiencies in
the LERs (Whitehead et al. 1993) that limit the
usefulness of the LER system for use in obtaining
estimates of component failure rates.  The NRC staff
prepared NUREG-1022, Revision 1 (NRC 1998), to
address general issues in reporting that have not been
consistently applied.  It covers some of the issues
identified above.  

The LER rule published in 1983 has recently been
amended and the reporting guidance in NUREG-1022,
Revision 2 (NRC 2000a) has been revised to eliminate
the burden of reporting events of little or no safety
significance, to better align the rules with the NRC’s
current needs and to clarify the reporting guidance
where needed.  However, the rule still only requires the
reporting of failures leading to the unavailability of
safety-related system trains.  Thus, LERs will not
provide failure data for all risk significant components.

In summary, LERs are a good source for identifying
and grouping initiating events.  However, they have
very limited value for obtaining component failure data.

A plant’s Technical Specifications requires that a
monthly operating report be provided by the plant
licensee to the NRC.  The scope of the information
requested of the licensees was originally identified in
Draft Regulatory Guide 1.16 (NRC 1975a) and includes
operating statistics and shutdown experience
information.  The information requested to be included
in the monthly operating report contents was revised by
Generic Letter 97-02 (NRC 1997) and eliminated some
reporting requirements.  Information that still must be
reported includes identification of all plant shutdowns,
whether they were forced or scheduled shutdowns, their
duration, the reason for the shutdown, the method of
shutting down the reactor, and corrective actions that
were taken.  In addition, the monthly operating reports
include the number of hours the reactor was critical, the
number of hours the generator was on line, and the net
electrical output of the plant.  

The NRC initially compiled the information from the
monthly operating reports on a monthly basis and
published it in a hard copy form as NUREG-0020,
“Licensed Operating Reactors - Status Summary

Report” (NRC 1995b).  This document is referred to as
the “Gray Book.”  NUREG-0020 was discontinued
after the December 1995 report.  However, the data
requested in Generic Letter 97-02 is being collected and
computerized as part of the NRC Performance Indicator
Project. 

In summary, the monthly operating reports provide
information on the number of scrams, the time spent at
full power, and the time spent in shutdown.  This
information can be used in identifying and grouping
initiating events and in calculating the exposure time in
which they occurred.  It is important to note that this
same information is generally available from the control
room logs and other sources.  Thus, in general, the
monthly operating reports can be used to supplement or
verify other data sources.

4.1.2.2 Internal Plant Failure Reports

Different plants have different means of recording
initiating events and component failures.  For each
automatic and manual scram, most plants generate an
internal scram report.  Scram reports generally cover
the same information provided in LERs and monthly
operating reports.  Thus, they can be used as the
primary or supplementary source for evaluating plant
scrams.

Most plants have a means of recording component
failures, records that are for the licensee’s own use
rather than for a regulatory use.  Reports are generally
created when significant component failures or
degraded states occur during plant operation or are
identified during plant surveillance tests.  These reports
may be called Unusual Occurrence Reports, Action
Reports, Failure Reports, Discrepancy Reports, or
Trouble Reports.  Some of the events documented in
these reports may lead to an LER.  However, these
reports may not identify all component failures and
generally are not exhaustive.  Thus, these reports are
useful for supplemental information but are not a good
source of component reliability data.

4.1.2.3 Maintenance Records

At all plants, some form of written authorization form
is required to initiate corrective or preventative
maintenance work, or design changes.  These author-
ization forms are known under different names at
various plants including work request/completion
records, maintenance work orders, clearance requests,
work requests, or tag-out orders.  Maintenance records
are a primary source of component failure data since
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they usually identify the component being maintained,
whether the component has failed or is degraded, the
corrective action taken, and the duration of the
maintenance action.  The time of the failure is also
available but maintenance records generally contain
limited information on the impact, cause, and method of
discovery of the component failure.

4.1.2.4 Plant Logs

At each plant, a control room log is typically completed
for each shift and contains a record of all important
events at a plant.  Control room logs identify power
level and plant mode changes, essential equipment
status changes, major system and equipment tests, and
entry and exit of Technical Specification Limiting
Conditions of Operation (LCOs).  When properly
maintained, a control room log is a good source of
information on major equipment and unit availability.
However, the amount of information entered can vary
from shift to shift.  Furthermore, the entries tend to be
brief.  

The control room logs are difficult to use as a source of
maintenance data since the tag-out and tag-in for a
maintenance event may span days or even months and
may not be dutifully recorded.  The control room logs
are also limited in value as a source of component
failure data since not all failures may be recorded by the
operators.  Component maintenance and failure inform-
ation is generally found more easily in maintenance
work orders.  All plant trips are likely to be recorded on
control room logs, but likely will not include a
description of the cause of the trip or the subsequent
transient behavior.  LERs or plant scram reports must
be reviewed to obtain this additional information.  

In summary, control room logs are good supplementary
sources of information but there are usually more
convenient and complete sources of information
available such as maintenance records.  However, the
control room logs are probably the best source of data
for indicating when redundant system trains are
switched from operating to standby status.

There may be other logs at a plant that contain essential
data.  One example is a component history log.  These
logs typically contain data on every failure and
maintenance and test action for a given component.  As
such, component history logs are good sources for
identifying not only the number of component failures,
but also the number of demands a component
experiences.

4.1.2.5 Component Exposure Data Sources

Calculation of plant-specific failure rates requires
determination of the number of failures and the
corresponding number of demands or operating time.
As indicated in the previous subsections, some of the
data sources used to establish the number of failures
also contain information on the number of demands and
operating time.  However, these sources do not contain
all component demands or the operating time for all
components.  Additional documents that must be
reviewed for information about component demands
and operating hours include test procedures.

In addition to demands presented by automatic
initiations and maintenance activities (obtained from
sources such as control room logs and maintenance
records), periodic testing is an important source of
demands especially for safety-related equipment.  To
establish the number of demands due to testing, testing
procedures pertinent to a component must be reviewed.
In addition to the actual test demands, additional test
demands may be imposed by technical specifications
following failure of a component.  A typical example
where this is imposed is when a diesel generator is
unavailable for operation.  Test logs or similar records
can be examined to obtain an estimate of the number of
tests carried out during the time period of interest.

It should also be noted that at some plants, some major
components may be monitored to count the number of
actuations experienced by the breakers (breaker cycle
counters).  In addition, the operating hours for large
motor-driven components at some plants may be
automatically registered on running time meters at the
electrical switchgear. Such counters and logs can be
used to supplement the demand and operating time
information obtained from other sources. 

4.1.3 Plant-Specific Data Bases

The Institute of Nuclear Power Operations (INPO) has
maintained several databases of component failure data
provided by each nuclear power plant since 1984.  The
first, Nuclear Plant Reliability Data System (NPRDS),
was a proprietary computer-based collection of
engineering, operational, and failure data on systems
and components in U.S. nuclear power plants through
1996.  The second, the Equipment Performance and
Information Exchange (EPIX) System, replaced
NPRDS and includes data reported since 1987.  Both
data bases are discussed in the following sections.
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4.1.3.1 Nuclear Plant Reliability Data System
(NPRDS)

In the early 1970s, industry committees of the American
National Standards Institute (ANSI) and the Edison
Electric Institute (EEI) recognized the need for failure
data on nuclear plant components.  As a result, a data
collection system was developed whose objective was
to make available reliability statistics (e.g., failure rates,
mean-time-between-failures, mean-time-to-restore) for
safety related systems and components.

This system, the Nuclear Plant Reliability Data System
(Tashjian 1982), was developed by Southwest Research
Institute (SwRI).  Plants began reporting data on a
voluntary basis in 1974, and continued reporting to
SwRI until 1982.  In January 1982, the INPO assumed
management responsibility for the system until
reporting was terminated at the end of 1996.

Originally the scope of the NPRDS covered the systems
and components classified by ANSI standards as Safety
Class 1, 2, or 1E, with a few exceptions such as reactor
vessel internals and spent fuel storage.  However, later
the scope was expanded to cover any system important
to safety and any system for which a loss of function
can initiate significant plant transients (Simard   1983).
By the end of 1984, 86 nuclear power plant units were
supplying detailed design data and failure reports on
some 4,000 to 5,000 plant components from 30 systems
(Simard 1985).

Data reported to NPRDS consisted of two kinds:
engineering reports and failure reports.  The
engineering reports provided detailed design and
operating characteristics for each reportable
component.  The failure reports provided information
on each reportable component whenever the component
was unable to perform its intended function.  The same
operational data contained in NUREG-0200 was also
included in the system.  The NPRDS failure reports
provided to INPO were generally generated by plant
licensees utilizing maintenance records such as
maintenance work orders.  These reports utilized a
standard set of component boundaries and failure mode
definitions.  

4.1.3.1.1 Limitations in the Data Available from
the NPRDS

Several issues regarding the quality and utility of the
NPRDS data have been observed, including: 

1. Input to NPRDS was discontinued on December
31, 1996.

2. The number of component demands is provided by
estimation.

3. The exposure time is estimated.
4. The amount of time needed to repair components

out for corrective maintenance is not provided.
5. Maintenance rates are not provided.
6. The voluntary nature of the reporting system

introduces uncertainty into measuring the
frequency at which a particular type of problem
occurs.

7. The final results of a problem investigation or the
ultimate corrective action taken are not always
included.

8. Report entries tend to be brief and often do not
provide enough information to identify the exact
failure mechanism.

4.1.3.2 Equipment Performance and Information
Exchange (EPIX) System

The need for high-quality, plant-specific reliability and
availability information to support risk-informed
applications was one impetus for a proposed reliability
data rule by the NRC to require utilities to provide such
information.  Instead of a regulatory rule, the nuclear
industry committed to voluntarily report reliability
information for risk-significant systems and equipment
to the EPIX system.  EPIX is a web-based database of
component engineering and failure data developed by
INPO to replace NPRDS.  The utilities began reporting
to EPIX on January 1, 1997. 

EPIX enables sharing of engineering and failure
information on selected components within the scope of
the NRC’s Maintenance Rule (10 CFR 50.65) and on
equipment failures that cause power reductions.  It also
provides failure rate and reliability information for a
limited number of risk-significant plant components.
This includes components in the systems included in the
scope of the Safety System Performance Indicator
(SSPI) program.  EPIX consists of:

• a site-specific database controlled by each INPO
member site with web-based data entry and
retrieval,

• an industry database on the INPO web site where
selected parts of the site-specific database are
shared among plants, and

• a retrieval tool that provides access to the vast
historical equipment performance information
available in the NPRDS. 
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Events reported to EPIX include both complete failures
of components and degraded component operation.
The number of demands and operating hours (i.e.,
reliability data) and the unavailability are required to be
collected for key components in the SSPI safety
systems for each plant.  In addition, contributors to
EPIX are also to include one-time estimates of the
number of demands and run hours for other risk-
significant components not included in SSPI systems. 

4.1.3.3 Reliability and Availability Data
System (RADS)

The NRC has developed the Reliability and Availability
Data System (RADS) to provide the reliability and
availability data needed by the NRC to perform generic
and plant-specific assessments and to support PRA and
risk-informed regulatory applications.  The NRC is
incorporating data from EPIX and INPO’s SSPI system
along with information from other data sources (e.g.,
LERs and monthly operating reports) into RADS.  Data
are available for the major components in the most risk-
important systems in both boiling water reactors
(BWRs) and pressurized water reactors ( PWRs).

The reliability parameters that can be estimated using
RADS are:

 • probability of failure on demand,
 • failure rate during operation (used to calculate

probability of failure to continue operation),
 • maintenance out-of-service unavailability (planned

and unplanned), and
 • time trends in reliability parameters.

The statistical methods available in RADS include
classical statistical methods (maximum likelihood
estimates and confidence intervals), Bayesian methods,
tests for homogeneity of the data for deciding whether
to pool the data or not, Empirical Bayes methods, and
methods for trending the reliability parameters over
time. 

4.2 Generic Data Sources

Several generic data sources currently available and
used throughout the nuclear power PRA industry are
identified in this section.  Several of these data bases
are discussed with regard to their attributes, strengths,
and weaknesses.  Data bases for both initiating events
and component failure rates are included.  Some data
sources represent compilations of raw data which have
been collected directly from various facilities and

processed and statistically analyzed.  Other data sources
utilize the results of the statistical analyzes of other data
bases to derive estimates for component probabilities.

Section 4.2.1 contains discussions and summaries of
generic data bases sponsored by the NRC for use in
both government and industry PRAs.  Section 4.2.2
contains discussions and summaries of generic data
bases sponsored by the Department of Energy (DOE)
for use in PRAs.  Section 4.2.3 contains discussions and
summaries of generic data bases developed by nuclear
power industry related organizations.  Section 4.2.4
contains a summary of a foreign data base, the Swedish
T-book.  Section 4.2.5 contains a discussion of several
non-nuclear data bases which could be useful for some
data issues in nuclear power PRA.  Section 4.2.6
describes a process for selecting a generic data value
from these sources.

4.2.1 NRC-Sponsored Generic Data Bases

The discussion of NRC-sponsored generic data bases is
presented in two sections.  The first discusses current
data bases.  These data sources are deemed appropriate
for current and future use.  The second section briefly
summarizes some historical data bases that have been
used or referenced in past analyses.  While useful at
the time, these data bases are no longer considered
appropriate sources of information. 

4.2.1.1 Current Data Bases

Current NRC-sponsored data bases are discussed in the
following subsections.  Major attributes for each data
base are identified, and limitations associated with each
data base are provided.

As a reminder, these data bases are considered to be
appropriate sources of information for use in PRAs or
other risk assessments.  However, it is the user’s
responsibility to ensure that any information from these
data bases used in their analysis is appropriate for their
analysis.

4.2.1.1.1 Severe Accident Risks Study Generic
Data Base (NUREG-1150)

The generic data base developed for the NRC’s Severe
Accident Risks study (NUREG-1150) (NRC 1990) is
documented in NUREG/CR-4550 as supporting
documentation (Drouin et al. 1990).  This data base was
developed from a broad base of information, including:
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• WASH 1400 (NRC 1975b),
• the IREP data base (Carlson et al. 1983),
• Zion (ComEd 1981), Limerick (PECO 1982), Big

Rock Point (CPC 1981), and the Reactor Safety
Study Methodology Application Program
(RSSMAP) PRAs (Hatch et al. 1981),

• NRC LER summaries (Hubble and Miller 1980,
Appendices O through Y), and 

• the NRC’s Station Blackout Accident Analysis
(Kolaczkowski and Payne 1983).

Component failure probabilities, failure rates, and
initiating event frequencies typically modeled in the
NUREG-1150 plant analyses are included in the data
base.  A mean value and an error factor on a log normal
distribution are provided for each entry into the data
base.

Limitations in the Data Available from 
NUREG-1150

The basis of the NUREG-1150 data base is from a
broad group of prior PRA analyses and generic data
bases.  Thus, it does not directly represent the results of
the  analysis of actual operational data.  Furthermore,
the data upon which those previous analyses are based
suffer from limitations similar to those for older NRC
data sources and the NPRDS data base (Sections
4.2.1.2 and 4.2.3.1).

4.2.1.1.2 Evaluation of Loss of Offsite Power
Events at Nuclear Power Plants: 
1980 - 1996

The report Evaluation of Loss of Offsite Power Events
at Nuclear Power Plants: 1980 - 1996, NUREG/CR-
5496 (Atwood et al. 1998), presents an analysis of loss
of offsite power (LOSP) initiating event frequency and
recovery times for power and shutdown operations at
commercial nuclear power plants.   The evaluation is
based on LERs for events that occurred during 1980
through 1996.  The primary objective of the study was
to provide mean and uncertainty information for LOSP
initiating event frequencies and recovery times.  A
secondary objective was to re-examine engineering
insights from NUREG-1032 (a LOSP study covering
the years 1968 through 1985) using the more recent
data.

The major findings of the report are:

• Not all LOSP events that occur at power result in
a plant trip.

• Plant-centered events clearly dominate the LOSP
frequency during both power and non-power
operational modes.

• Plant-centered LOSP frequency is significantly
higher during shutdown modes than during power
operation.

• No statistically significant variation among units
was found for plant-centered sustained initiating
events.

• During shutdown, statistically significant variation
among plants was found for plant-centered
sustained initiating events.

• Equipment faults were the main contributor (58%)
to plant-centered LOSP initiating events that
occurred during power operations.  Human error
accounted for a smaller contribution (23%).

• During shutdown conditions, human error was the
dominant contributor (58%).

• A clear downward trend can be seen for the plant-
centered initiating event frequency.

• Grid-related LOSP frequency is small.
• For severe weather, statistically significant site-to-

site variability exists for sustained shutdown LOSP
frequencies.

• Severe weather events had significantly longer
sustained recovery times.

• For sustained recovery times, no pattern was found
correlating unit design class with longer recovery
times.

• Longer recovery times were observed for sustained
plant-centered LOSP events that did not result in a
plant trip or that occurred during shutdown.

Nominal frequencies and upper and lower bounds are
given in the report.

Limitations in the Data Available from
NUREG/CR-5496

The generic data base developed in this NRC-sponsored
data study is based on raw data from LERs.  LERs
constitute data involving only reportable events at
nuclear power plants, and the degree of detail provided
in the LERs varies.  Some information needed in the
data analysis had to be estimated (e.g., allocation of
1980 time into critical and shutdown time), and the
analysis ended with events that occurred in 1996.  Thus,
the data base does not contain events that occurred after
1996, and may not be representative of actual current
operational experience.
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4.2.1.1.3 Rates of Initiating Events at U.S.
Nuclear Power Plants: 1987 - 1995

The report Rates of Initiating Events at U.S. Nuclear
Power Plants: 1987 - 1995, NUREG/CR-5750 (Poloski
et al. 1999a), presents an analysis of initiating event
frequencies at domestic nuclear power plants.  The
evaluation is based primarily on the operational
experience from 1987 through 1995 as reported in
LERs.  The objectives of the study were to:

• provide revised frequencies for initiation events in
domestic nuclear plants, 

• compare these estimates to estimates used in PRAs
and Individual Plant Evaluations (IPEs), and 

• determine trends and patterns of plant
performance.

Major findings of the report are:

• Combined initiating event frequencies for all
initiators from 1987 through 1995 are lower than
the frequencies used in NUREG-1150 (NRC 1990)
and industry IPEs by a factor of five and four,
respectively.

• General transients constitute 77% of all initiating
events, while events that pose a more severe
challenge to mitigation systems constitute 23%.

• Over the time period of the study, either a
decreasing or constant time trend was observed for
all categories of events.

• Loss of coolant accident (LOCA) frequencies are
lower than those used in NUREG-1150 and
industry IPEs.

Nominal frequencies and upper and lower bounds are
given in the report.

Limitations in the Data Available from
NUREG/CR-5750

The generic data base developed in this NRC-sponsored
data study is primarily based on raw LER data from
1987 through 1995.  For some events (e.g., LOCAs)
information from additional operating experience, both
domestic and foreign, was used with other sources of
information (e.g., engineering analyses) to estimate the
initiating event frequencies.  Since the analysis ended
with events that occurred in 1995 and made use of other
sources of information, the data base may not be
representative of actual current operational experience.

4.2.1.1.4 System Reliability Studies

A series of system reliability studies, documented in the
multi-volume NUREG/CR-5500 report,1 presents an
analysis of system unreliability for various systems.2

The following volumes comprise the systems that will
be studied::

• Volume 1:  auxiliary/emergency feedwater system
(Poloski et al. 1998),

• Volume 2:  Westinghouse reactor protection
system (Eide et al. 1999a),

• Volume 3: General Electric reactor protection
system (Eide et al. 1999b),

• Volume 4:  high-pressure coolant injection system
(Grant et al. 1999a),

• Volume 5:  emergency diesel generator power
system (Grant et al. 1999b),

• Volume 6:  isolation condenser system (Grant et al.
1999c),

• Volume 7: reactor core isolation cooling system
(Poloski et al. 1999b),

• Volume 8:  high-pressure core spray system
(Poloski et al. 1999c),

• Volume 9: high pressure safety injection system
(Poloski et al. 2000),

• Volume 10: CE reactor protection system
(Wierman et al. 2002a), and

• Volume 11: B&W reactor protection system
(Wierman et al. 2002b).

With the exception of the reactor protection system
volumes, the analyses of the other systems are based on
information obtained from LERs.  For the reactor
protection system volumes, the analyses are based on
information obtained from NPRDS and LERs.

The analyses: (1) estimate the system unreliability
based on operating experience, (2) compare the
estimates with estimates using data from PRAs and
IPEs, (3) determine trends and patterns in the data, and
(4) provide insights into the failures and failure
mechanisms associated with the system.

1
 Currently, it is expected that some of these reports will be

updated with new information.

2
 Train, subsystem or system data can be combined with basic

event failure data to obtain improved estimates of component
failure rates.  A Bayesian method for doing this is described in
Martz and Almond 1997.
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Unreliability estimates (means and distributions) are
provided for the entire system for each plant.  In
addition, unreliability estimates for major train
segments failure modes (e.g., failure to start – pump,
driver, valves, and associated piping) are provided.
Common cause failure estimates are also provided. 

Limitations in the Data Available from
NUREG/CR-5500

The information available from this NRC-sponsored
data study is based on that available from LERs and
NPRDS.  LERs constitute data only involving
reportable events at nuclear power plants, and the
degree of detail provided in the LERs varies.  The
limitations associated with NPRDS are provided in
Section 4.2.3.1.  The information used in the studies
spans various time frames, with the most up-to-date
information coming from 1997.  Thus, the results of the
studies may not be representative of actual current
operational experience.

4.2.1.1.5 Component Performance Studies

A series of component performance studies,
documented in the multi-volume NUREG-1715 report,
presents an analysis of component performance for
various components.  The following volumes comprise
the components that have been studied:

• Volume 1: turbine-driven pumps (Houghton and
Hamzehee 2000a),

• Volume 2: motor-driven pumps (Houghton and
Hamzehee 2000b),

• Volume 3: air-operated valves (Houghton 2001a),
and

• Volume 4: motor-operated valves (Houghton
2001b).

The analyses are based on information obtained from
NPRDS and LERs.  The data included in the studies
cover the period 1987 through 1995.

The analyses: (1) estimate the system-dependent
unreliability of selected components, (2) compare the
estimates with estimates from PRAs and IPEs, (3)
determine trends and patterns in the data, and (4)
provide insights into component performance, including
component failure mechanisms.

System-dependent unreliability estimates (means and
distributions) for various failure mechanisms are
provided for each component.  Trends in component
failure rates were also evaluated in these studies.

Limitations in the Data Available from 
NUREG-1715

The information available from this NRC-sponsored
data study is based on that available from LERs and
NPRDS.  LERs constitute data only involving
reportable events at nuclear power plants, and the
degree of detail provided in the LERs varies.  The
limitations associated with NPRDS are provided in
Section 4.2.3.1.  The information used in the studies
spans various time frames, with the most up-to-date
information coming from 1998.  Thus, the results of the
studies may not be representative of actual current
operational experience.

4.2.1.2 Historical Data Bases

In the past, NRC sponsored several programs to
develop data bases on nuclear power plant component
reliability and initiating event frequencies.  These
programs included:

• In-Plant Reliability Data Base for Nuclear Power
Plant Components (IPRDS) (Drago et al. 1982) –
established at Oak Ridge National Laboratory to
establish methods for data collection and analysis.

• Nuclear Reliability Evaluation Program (NREP) –
generic data base developed to support the
Probabilistic Safety Analysis Procedures Guide,
NUREG/CR-2815 (Papazoglou et al. 1984).

• Interim Reliability Evaluation Program (IREP)
Generic Data Base – developed to support the
performance of five PRAs in the 1980s and
documented in the IREP procedures guide (Carlson
et al. 1983).

• Nuclear Computerized Library for Assessing
Reactor Reliability (NUCLARR) – developed as a
repository of human error and hardware failure
information that could be used to support a variety
of analytical techniques for assessing risk.
NUCLARR was documented in five volumes as
NUREG/CR-4639 (Gertman et al. 1990).

Major attributes for each program and the resulting data
bases are documented in the cited references. 

4.2.2 DOE-Sponsored Generic Data Bases

Several data bases have been developed to support
DOE-sponsored projects.  Two of these data bases are
discussed in the following sections.
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4.2.2.1 Component External Leakage and
Rupture Frequency Estimates

Estimates of external leakage and rupture frequencies
for components such as piping, valves, pumps, and
flanges are necessary for detailed risk analysis of
internal flooding.  These estimates have been developed
and documented in EGG-SSRE-9639 (Eide et al. 1991).
The estimates are based on an analysis of data gathered
from a comprehensive search of LERs contained in
Nuclear Power Experience (NPE) (Hagler-Bailly 1972).

The NPE data base was searched for data covering the
period September 1960 through June 1990.  The
external leakage and rupture events collected from the
data were converted to component leakage and rupture
frequencies in a three-step process:

1. The ratios of external rupture events to external
leakage and rupture events were examined for
various components by size and system to decide
how to group the data.

2. The final probabilities of an external rupture, given
an external leakage or rupture event, were
determined.

3. Lastly, the external leakage and rupture
frequencies were obtained by estimating
component populations and exposure times.

Limitations in the Data Available from 
EGG-SSRE-9639

The generic data base developed in this DOE-sponsored
data study is based on raw LER data from 1960 through
1990.  LERs constitute data only involving reportable
events at nuclear power plants, and the degree of detail
provided in the LERs varies.  Since the analysis ended
with events that occurred in 1990, the data base may not
be representative of actual current operational
experience.

4.2.2.2 Generic Component Failure Data Base
for Light Water and Liquid Sodium
Reactor PRAs

A generic component failure data base was developed
by the Idaho National Engineering Laboratory (INEL)
for light water and liquid sodium reactor PRAs.  This
data base is documented in EGG-SSRE-8875 (Eide et
al. 1990).  The intent of this project was to base the
component failure rates on available plant data as much

as possible rather than on estimates or data from other
types of facilities.  The NUCLARR data base and the
Centralized Reliability Data Organization (CREDO)
(Manning et al. 1986) were used as the primary sources
of component failure data.  If specific components and
failure modes were not covered in those two sources,
then other standard sources such as IEEE STD-500
(IEEE 1983) (for electrical components) and WASH-
1400 (NRC 1975b) were used.  The data base is
organized into four categories according to the working
fluid of the component:

• mechanical components (water or steam),
• mechanical components (liquid sodium),
• mechanical components (air or gas), and
• electrical components.

Limitations in the Data Available from 
EGG-SSRE-8875

The generic data base developed in this DOE-sponsored
data study is based on information from multiple
sources.  Since the analysis ended with events that
occurred in 1990, the data base may not be
representative of actual current operational experience.

4.2.3 Industry Data Bases

Several data bases developed within the nuclear power
industry for both risk assessment and for plant
operations are summarized here.  Data bases discussed
in this section were developed by the Electric Power
Research Institute (EPRI) and the consulting firms of
EQE, International and Science Applications
International Corporation (SAIC).  

Although the NPRDS and EPIX data bases (described
in Section 4.1.3) contain plant-specific data, they can be
used to generate generic failure rates for components.
Methods for aggregating individual plant data to
estimate failure rates are described in Section 8.2 of this
handbook.  Aggregation of data from EPIX can be
performed using the RADS software developed under
the NRC auspice.

4.2.3.1 EQE, International

The EQE, International generic data base (formerly
known as the Pickard, Lowe, and Garrick or PLG data
base) for light water reactors is set up to support PRA
and reliability analysis for which both point estimates
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and uncertainty distributions are developed.3  The data
base contains information on:

• Component failure rates,
• Common cause failures,
• Component maintenance frequencies and mean

durations,
• Initiating events,
• Fire and flood events at nuclear sites, and
• Shutdown events involving loss of residual heat

removal (RHR) cooling and loss of inventory.

The fire, flood, and shutdown events are a compendium
of experience event summaries from all U.S. nuclear
sites.  The common cause data are presented as event
description and have been classified according to the
methodology of NUREG/CR-4780 (Mosleh et al.
1989).  The fire, flood, shutdown and common cause
events have, in addition to the description, information
in various fields making them convenient for sorting
and for use in plant-specific screening analysis.  

All other data are in the form of distributions and are
compatible with the PLG risk assessment software,
RISKMAN® . These distributions are generated using
the data analysis module of RISKMAN® which can be
used as a stand-alone software.  The distributions
developed are available to the other modules of
RISKMAN® used for fault-tree quantification and core
damage sequence quantification.

The actuarial data are from over 20 nuclear sites in the
U.S. and in Europe. Other sources of generic
information also used are:

• EPRI reports on components, shutdown accident
events, initiating events, loss of offsite power;

• Special NUREG reports on components such as
pumps, valves, diesel/generators;

• Compiled data bases such as Nuclear Power
Experience, NUCLARR, IEEE-500 (IEEE 1983),
NPRDS, etc.; and

• Insurance company databases for loss events.

The database includes statistics for components that
cover population, demands, operating times, failures,
and maintenance outages and durations at specific

plants. It also includes event-by-event analyses for
initiating events, common cause failures, and fires and
floods over the whole U.S. plant population. In addition
to this factual information, parameter estimates from
published sources of generic reliability data are also
provided. 

The actuarial data and the other generic data are
combined using a two-stage Bayesian updating
technique.  The generic distributions maintain what is
referred to as plant-to-plant variability.  Since the data
are developed specifically to be used for Monte Carlo
sampling, they are defined with a minimum of 20
discrete bins with special attention given to the tails of
the distributions.

The database is available in a format compatible with
RISKMAN® and also as ASCII files. 

Limitations in the Data Available from EQE,
International

The EQE data base is proprietary, so the adequacy and
comprehensiveness of the underlying data have not
been evaluated for this document.  As noted above,
several of the sources of generic information
incorporated into the data base are discussed previously
in this chapter (e.g., NUCLARR, NPRDS); thus, it is
possible that some of the data from the EQE data base
may have limitations similar to other data bases
discussed in this chapter.  However, it should be noted
that the proprietary nature of the EQE data base
precludes any definitive judgment as to how data bases
such as NUCLARR and NPRDS were utilized in the
development of the EQE database.

4.2.3.2 Science Applications International
Corporation

Science Applications International Corporation  (SAIC)
has developed a generic, proprietary data base for
application to PRAs on commercial nuclear power
plants.4  

The scope of the data base for components and their
failure modes was established by a review and
tabulation of all basic events and component failures in
SAIC-conducted PRAs.  Components were grouped

3
 The information on the EQE/PLG data base is based on  personal

correspondence from Shabha Rao, PLG, Newport Beach,
California, to Timothy Wheeler, Sandia National Laboratories,
September 16, 1999, and to Donnie Whitehead, Sandia National
Laboratories, April 4, 2001.

4
 The information on the SAIC data base is based on a personal

correspondence from Alan Kolaczkowski, Vice President, SAIC,
to Donnie Whitehead, Sandia National Laboratories, April 18,
2001.
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into generic categories rather than specifically by
system or application.  Thus, all basic events for motor-
driven pumps were categorized into a single “motor-
driven-pump” category rather than delineated size or by
system.  Some component failure modes were merged
to reflect the available data (e.g., air-operated valves
fail-to-open and fail-to-close were combined into a
single failure mode – fail-to-operate.  Component
boundary definitions are given for all components in the
SAIC generic data base.  

The data base was developed by collecting all sources
of available parameter estimates relevant to the
component failures defined by the scoping process.
Each data source was evaluated against a set of
acceptance criteria, including availability (no
proprietary sources were included), compatibility of
data to being fit to a lognormal distribution, and
Bayesian updating.  Any source which used Bayesian
parameter estimation methods to develop estimates for
component failure modes was rejected.  Such data
sources were considered to be too plant-specific for
inclusion into a generic data base.

Each individual data source selected against the
acceptance criteria was fitted to a lognormal
distribution.  Then, all data sources for each particular
component failure were aggregated through a weighted
sum approach (each source was weighted equally).
Each aggregated distribution was fitted to a lognormal
distribution.

Limitations in the Data Available from the SAIC
Data Base

The SAIC data base is proprietary, so the adequacy and
comprehensiveness of the underlying data have not
been evaluated for this document.

4.2.3.3 Advanced Light Water Reactor Data
Base

EPRI’s Advanced Light Water Reactor (ALWR) Utility
Requirements Document (EPRI 1989) contains a
reliability data base for use in ALWR PRAs.   Several
data sources were reviewed and representative failure
rates and event probabilities were compiled from these
data sources.  A best estimate value was selected for
each component type and failure mode based on
judgment regarding the applicability of the data source
to the expected ALWR design.  The primary sources
used in the data survey were the Oconee PRA (Duke
1984), the Seabrook Probabilistic Safety Study (PLG
1983), parameter estimates from licensee-event reports

documented in NUREG/CR-1363 (Battle 1983) for
valves, NUREG/CR-1205 (Trojovsky 1982) for pumps,
and NUREG/CR-1362 for diesel generators (Poloski
and Sullivan 1980).

Limitations in the Data Available from the ALWR
Data Base

The ALWR data base lists only best estimates for each
initiating event, failure rate, and event probability.  The
survey is well documented in that all estimates collected
for each parameter estimate are shown.  However, only
a cursory statement of rationale for deriving the best
estimate value is given.  No uncertainty bounds or
probability density functions are given.

4.2.4 Foreign Sources

Two sources of data from Nordic nuclear power plants
are available.  The I-Book documents initiating event
frequency data and the T-Book documents component
failure data.

4.2.4.1 Sweden’s T-Book for Nordic Nuclear
Power Plants

Since the early 1980s a Reliability Data Handbook, the
T-Book (ATV 1992), has been developed and used for
nuclear power plant of Swedish design.  The T-Book
provides failure data for the calculation of component
reliability for use in regulatory safety analyses of
Nordic  nuclear power plants.  The 3rd edition is based
on operation statistics from 12 Swedish and 2 Finnish
nuclear power plants, including approximately 110
reactor years of experience.  

The failure characteristics incorporated into the
parameter estimations in the T-Book are based on
Licensee Event Reports for Nordic plants delivered to
the Swedish Nuclear Power Inspectorate (SKi) and
from failure reports in ATV’s central data base.  Only
critical failures, those that actually caused a
component’s function to stop or fail, are incorporated
into the parameter estimations.  A multistage empirical
Bayesian approach is used to develop the component
parameter estimates from the raw data (Po@rn 1996).

Limitations in the Data Available from the T-Book

Data for the T-Book are collected from LERs delivered
to the SKi; thus, the parameter estimates derived from
the data are based only on data of reportable incidents.
It is not understood how representative such data may
be of actual operational experience.
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4.2.4.2 Sweden’s I-Book for Nordic Nuclear
Power Plants

The I-Book (Po@rn et al. 1994) contains a compilation of
initiating events that have occurred in Nordic nuclear
power plants.  The data reflects 215 reactor years of
operating experience prior to 1994.  In the first edition
of the I-Book, issued in 1993 (Po@rn et al. 1993),
initiating event groups were identified and frequencies
generated.  The operating experience from two
additional plants in Finland were included in the second
edition (Po@rn et al. 1994).

The I-Book includes the development of a statistical
model for performing a trend analysis.  The model is
based on nonhomogeneous Poisson (Power Law)
processes and includes a complete treatment of
parametric uncertainty using Bayesian methods.

Limitations in the Data Available from the I-Book

Data for the I-Book are collected from operating
experience at Nordic plants.  It is not understood how
representative such data may be of operational
experience in nuclear power plants in the United States.

4.2.5 Non-Nuclear Power Data Bases

There are many non-nuclear data bases that contain
failure data that can potentially be used in nuclear
power plant PRAs.  Several of these data bases are
described below.  When using data from non-
commercial nuclear sources, care must be taken to
ensure that the data are for components and conditions
representative of those that exist in nuclear power
plants.  

4.2.5.1 Reliability Analysis Center

The Reliability Analysis Center (RAC) in Rome, New
York, maintains two data bases on electronic and non-
electronic component reliability.  The data bases are:

• Electronic Parts Reliability Data (Denson et al.
1996), and 

• Non-Electronic Parts Reliability Data (Denson et
al. 1995).

These RAC databases provide empirical field failure
rate data on a wide range of electronic components and
electrical, mechanical, and electro-mechanical parts and
assemblies.  The failure rate data contained in these
documents represent cumulative compilation from the

early 1970s up to the publication year for each
document.  Data are collected from sources such as:

• published reports and papers,
• government-sponsored studies,
• military maintenance data collection systems,
• commercial/industrial maintenance databases, and
• direct submittals to the RAC from military or

commercial organizations that maintain failure data
bases.

Limitations in the Data Available from the RAC
Handbooks

The RAC handbooks provide point estimate parameter
estimations for failure rates (or demand probabilities).
No treatment of uncertainty is provided. 

4.2.5.2 Offshore Reliability Data Project

The Offshore Reliability Data (OREDA) project has
collected and processed data from offshore oil
platforms operated by 10 different companies off the
coasts of the U.K., Italy, and Norway.  Reliability data
collected and processed by OREDA has been published
in the Offshore Reliability Data Handbook (OREDA
1997).  The main objective of OREDA is to collect
reliability data for safety important equipment in the
offshore oil industry.

Components and systems for which data are collected
are:

• Machinery
– Compressors
– Gas turbines
– Pumps

• Electric generators
• Mechanical Equipment

– Heat exchangers
– Vessels

• Control and Safety Equipment
– Control Logic Units
– Fire and Gas Detectors
– Process sensors

• Valves
• Subsea Equipment

– Control Systems
– Well completions

Data have been collected from 7,629 individual
equipment units (e.g., individual pumps, valves,
motors) over a total observation period of 22,373 years.
The records include 11,154 failures.  
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Under each category of equipment (e.g., machinery)
information is collected on each type of component
(e.g., centrifugal compressors).  Data are further sorted
by a component’s driving mechanism (e.g., electric
motor-driven), by failure mode (e.g., fails-to-start, fails-
while-running), and by the criticality of each failure
(e.g., critical - terminates the operation of the
component, degraded - component still operates).

The OREDA-97 handbook presents failure rate and
demand failure probability estimates for various
combinations of component function, application,
capacity, operating fluid, and size.    

Limitations in the Data Available from the OREDA
Data Base

Certain data quality issues have arisen in the
development of OREDA (Sandtorv et al. 1996).  The
quality and availability of data can vary significantly
among the 10 participating companies.  Interpretations
of equipment definitions and failure mode
specifications can vary among the participants as well,
affecting the quality of data.  The effect of preventive
maintenance on equipment reliability is difficult to
measure.  Since  preventive maintenance practices vary
among the participating companies it is unclear as to
what would be the baseline rate of a generic type of
equipment.

4.2.5.3 IEEE-500 Standard

The Institute of Electrical and Electronics Engineers
(IEEE), Inc. Standard 500-1984 (IEEE 1983) contains
failure estimates for various electrical, electronic,
sensing, and mechanical components.  Delphi
procedures (an elicitation process)  were used in
producing component failure estimates. Multiple
sources of information, including nuclear, fossil fuel,
and industrial, were considered by the experts as part of
the Delphi process.

Limitations in the IEEE-500 Data Base

The major limitations associated with the IEEE-500
data base are (1) the data base contains dated material
(i.e., the latest information used to develop the data
base comes from the early 1980s), and (2) the  process
used to support development of the failure estimates
was an uncontrolled process.  (A survey was sent to
various individuals requesting them to provide
information on selected issues.  No inherent controls
were placed on the individuals, and no training on how

to estimate failure probabilities was provided to the
individuals filling out the survey forms.)  In addition, it
should be noted that IEEE Standard 500-1984 has been
withdrawn and is no longer available from IEEE. 

4.2.6 Selection of Parameter Estimates
from Existing Data Bases

The need to select parameter estimates from existing
generic data bases may arise when performing a PRA.
This can occur when a PRA is being performed on a
new plant that has no operating history or it may occur
when no plant-specific information exists for a specific
component.  Whatever the reason, when it becomes
necessary to select parameter estimates from generic
data bases, certain cautions should be observed:

1. The generic data base should contain failure
probability estimates for components that are
identical or comparable to the ones in the PRA
model in terms of size, component boundary
definition, intended operational history (e.g.,
normally operating versus standby), and expected
or postulated operating environment.

2. The generic data base should contain a
recommended point estimate and an uncertainty
distribution for each identified failure.

3. If possible, the primary sources of information
used to develop the generic data base’s failure
probabilities and distributions should be
information from other nuclear power plants.
Supplemental information from non-nuclear
sources should be used only when necessary to
provide failure probabilities and distributions for
components that cannot be obtained from nuclear
power plant generic data sources.

4. Where possible, the generic data base’s failure
probabilities and distributions should be derived
from actual failure events.  If such information is
not available, then failure probabilities and
distributions generated by other techniques (e.g.,
expert elicitation) are acceptable.

5. Generic data base failure probabilities and
distributions should reflect current trends.  If
significant trends exist within the failure data
indicating either an increase or decrease in the
failure probabilities, the underlying event failure
information used to generate the failure
probabilities should represent these recent events.
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However, if no significant trends exist, then data
from all years can be used to estimate the failure
probabilities.

6. The failure probability estimates contained within
the generic data base should not be based on

incestuous sources, i.e., the estimates should not be
derived from two different sources that employed
similar or different  analysis techniques to the same
ultimate set of failure information.
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5.  PLANT-SPECIFIC DATA COLLECTION AND INTERPRETATION

The incorporation of plant-specific data in the
parameter estimates used in a PRA produces risk
estimates that reflect the actual plant experience.  A
plant-specific data analysis also allows comparison of
plant equipment performance relative to an industry
average (the generic value).  A plant-specific data
analysis will identify those components or systems
whose performance is worse than the industry average.
It may also identify components or systems with better-
than-average performance.

As indicated in Chapter 4, the raw failure data needed
for a plant-specific data analysis is dependent upon the
scope the analysis.  The scope can include accident
initiating events, component failure events and
unavailablilities due to maintenance or testing, and
recovery events.  Typical sources of raw data available
at nuclear power plants for each of these type of events
are identified in Section 4.1.  The information needed
may have to come from multiple sources. 

Interpretation and reduction of the raw data is required
to obtain the reduced data used in the parameter
estimation models described in Chapters 2 and 6.  The
reduction of the raw data includes consideration of
issues such as pooling of identical component data, the
mode of operation the plant was in when a failure
occurred, and the severity of the event.  Additional
issues concerning data reduction, such as aging and
time impacts, are addressed in Chapter 7.
 
This chapter describes a process for collecting and
reducing raw data for the purpose of generating plant-
specific data for use in a PRA.  Because nuclear power
plants collect and record raw data in different ways, the
process described is general in nature but, sufficient to
successfully collect and reduce available date for use in
a PRA.    Some practical concerns and issues related to
the scope and performance of plant-specific data
analysis are also presented.  

A process for reducing the data necessary to calculate
initiating event frequencies, component failure data, and
recovery event data are presented in Sections 5.1, 5.2,
and 5.3, respectively.  The reduced data obtained in this
process are combined according to the guidance
provided in Chapters 2 and 6 to obtain the parameters
necessary to quantify PRA models. 

5.1 Initiating Event Data

The methods for evaluating plant-specific initiating
event frequencies provided in Chapter 6 require the
number of initiating events of interest and the time

period over which these events occurred.  Guidance is
provided in this section for collecting and interpreting
this required data.

5.1.1 Initiating Event Categories

The initiating events of interest in nuclear power plant
PRAs are dependent upon the mode of operation that
the plant is in.  For power operation, the events of
interest are generally reactor scrams but can also
include unplanned forced shutdowns.  Typical initiating
events during power operation include multiple
categories of plant transients and loss-of-coolant
accidents (LOCAs).  Trips from zero power or low
power may be excluded as valid initiating events in a
full power PRA if their occurrence is precluded during
full power operation. However, low power events
should be considered as valid initiating events at full
power if they can occur during full power.  For
shutdown modes of operation, the reactor is already
subcritical and thus the events of interest are somewhat
different.  Typical initiating events modeled in
shutdown PRAs include loss of decay heat removal
events, reactivity insertion events, and LOCAs or drain-
down events.

It is a standard practice in PRAs to group initiating
events into categories based on their impact on certain
plant systems, and according to the demands they make
on other plant systems needed for accident mitigation.
Examples of typical initiating event categories include
loss of offsite power, loss of feedwater, main steam
isolation valve (MSIV) closure, and large, medium, and
small LOCAs.  Lists of typical transients that have
occurred at nuclear power plants while at full power
have been categorized by EPRI (1982) and the INEEL
(Mackowiak et al. 1985 and Poloski et al. 1999a).
Typical initiating events to consider during low power
and shutdown conditions have also been established for
both boiling water reactors (BWRs)  (Staple et al. 1999)
and pressurized water reactors (PWRs) (Chu et al.
1993).

5.1.2 Data Window

The time period for collecting initiating event data
should be as broad as possible.  In general, data from all
of the years of plant operation should be considered.
However, screening of the data can be performed to
eliminate unrepresentative events (see the next section).
One screening technique used in general practice is to
eliminate the first year of operational data as
unrepresentative.  
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Since the number of plant events can decrease over time
due to improvements in the design and operation of the
plant, it is desirable to have the data reflect the most
recent operating experience.  This can be accomplished
by considering only the data from the most recent years
of operation.  Alternatively, an analyst could perform a
trend analysis of the data (see Chapter 7). 

5.1.3 Initiating Event Data Allocation and
Screening

To allocate plant-specific event data to the initiating
event categories modeled in the plant PRA, it is
necessary to establish the status of the plant, including
its power level at the time of the event and the impact of
the event on the plant systems.  Such information is
generally available in the raw data sources discussed in
Section 4.1 that are available to identify initiating
events (i.e., LERs, scram reports, and monthly
operating reports). 

For initiating events during power operation, the events
of concern are those that result in a reactor trip or
forced shutdown.  To allocate these events to the
appropriate initiating event category, a data analyst
must examine the sequence of events prior to and
immediately following the reactor trip/shutdown.  The
initial plant fault leading to a sequence of events that
eventually result in an automatic or manul reactor trip
or unplanned shutdown is used in categorizing the
event.  For example, one plant trip may have been
initiated by spurious closure of the MSIVs and be
identified as an MSIV closure transient.  Another event
may be initiated by a  loss of condenser vacuum which
produces a closure of the MSIVs.  This event may also
be placed in the MSIV closure transient category,
unless some significant difference in the plant response
is identified.

The initiating event data analysis can also be used to
help establish the conditional probability of events
subsequent to the event actually leading to the plant
trip.  Examples of this include the failure of the reactor
protection system leading to an anticipated transient
without scram (ATWS), and  the occurrence of a relief
valve sticking open leading to a transient-induced
LOCA.  

It is possible that some events leading to plant scrams
(or loss of heat removal during a shutdown mode of
operation) can be eliminated from the data analysis.
One acceptable reason for eliminating  initiating event
data involves design or operational changes that may
have been made to reduce the frequency of reactor

scrams.  Such changes to the plant design or operation
can eliminate the occurrence of failures that have
occurred in the past.  For example, a plant may have
experienced a significant number of loss of feedwater
events due to the design of the feedwater control
system.  As a result, a utility may have replaced the
feedwater controller with a new, more reliable design
that eliminated the occurrence of loss of feedwater due
to controller faults.  The data analyst can thus eliminate
past events initiated by faults in the old feedwater
controller from consideration.

Changes in the plant design or operation can also affect
the classification of events.  The following example,
provided in EPRI TR-100381 (EPRI 1992), illustrates
this point.  The MSIV vessel level closure set point at
some BWRs has been lowered from Level 2 to Level 1.
As a result, the fraction of initiating events that lead to
MSIV closure may be different before and after the
design change implementation and the total historical
count of MSIV closure events may not be valid for the
current condition of the plant. One approach for dealing
with such a design change is to eliminate all events
prior to the design change that result in MSIV closure
due to the generation of a low vessel level.  This
approach has the undesirable impact of reducing the
sample size. An alternative is to review the past events
to determine if the MSIVs would have closed with the
revised closure set point in place.  However, this may
be difficult to determine from the available information.

5.1.4 Selection of Exposure Time

For estimating the frequencies of initiating events that
occur during any plant operating mode, the appropriate
exposure time is the number of calendar years of
operation corresponding to the period of time the
initiating event data is collected.  Expressing the
frequency of initiating events on a calender year basis
allows for evaluation of risk in each mode on a
consistent and average basis.  

However, it may be necessary to generate the initiating
event frequencies based on the time the plant is in the
particular mode of operation.  For example, initiating
events during power operation are often expressed in
terms of events per critical year (one critical year
represents 8760 hours of reactor criticality).  Since
generic initiating event frequencies are often expressed
in events per critical year (Poloski 1999a), calculation
of the plant-specific frequencies in this same unit is
required for combining the two values using Bayesian
techniques (see Section 6.2.2).  To determine at-power
initiating event frequencies, the plant-specific
frequencies expressed as events per calender year have
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to be increased by dividing by the fraction of time the
plant was at power.  This fraction is called the
criticality factor and may be determined from the
control room logs or the Grey Books where the
residence times in each of the operational modes are
recorded.  Criticality factors for each plant are provided
in Appendix H of NUREG/CR-5750 (Poloski 1999a)
for the years 1987 through 1995.  Alternatively, the
generic frequencies may be divided by the average
criticality factor (0.75 for the data reported in
NUREG/CR-5750) to obtain generic data expressed in
the same units as the plant-specific data (i.e., events per
calender year.  For example, suppose an event is
expected to occur 1.6 times every calender year, on
average, and that the criticality factor for a specific
plant is 0.8 (i.e., the reactor has been critical 80% of the
time).  Then, the same event correlated to units of
critical years is 2 events per critical year (1.6
events/calender year divided by 0.8 critical
years/calender year).

5.2 Component Failure Data

The raw data sources containing equipment operating
records in a nuclear power plant typically document
tens of thousands of component malfunctions over the
plant’s lifetime. The records may be kept in various
forms including hard copies of maintenance work
orders or a computerized file. The most useful raw data
sources provide information on the specific component
affected, the observed problem, and the action taken.
To calculate plant-specific component failure rates and
unavailability from the data in these records, the data
analyst must identify those malfunctions that cause
component functional failures and also determine the
corresponding number of demands or operating time.
This section describes this process and some of the
practical concerns required to extract the necessary
data. 

5.2.1 Component Data Identification

The first step in evaluating plant-specific component
failure rates is to identify the components and their
failure modes that will be analyzed.  This step is usually
done in coordination with other PRA analysts (typically
those analysts that generate system models such as fault
trees).  This coordination is critical because it focuses
the component data analysis on only those components
and their failure modes that appear in the PRA models
and establishes the definitions of the component
boundaries.

It should be noted that extremely reliable components
may never have failed in the history of the plant.  This
lack of failure history makes it difficult to estimate the
true failure rate or probability.  Reliable components
can generally be identified by reviewing failure rates in
generic data bases.  However, the analyst is cautioned
in the use of this data since a usually reliable
component may not be reliable at a particular plant.  In
addition, it is often impossible to identify the number of
demands or run times for certain components (for
example, the number of demands placed on a relay)
using the existing plant records.

5.2.1.1 Data Window

Plant-specific data is selected over a sufficient time
period to provide statistically meaningful results.  Use
of data from throughout the plant history is preferred
since they will be less subject to random variability.
The following examples from EPRI TR-100381 (EPRI
1992) illustrates the amount of data required to achieve
an acceptable sample size. 

“With no failures, the statistical significance can
be measured by the 95th upper confidence limit.
To establish a 95th confidence limit on a failure
rate of 1E-3/hr, the required cumulative run time
for the population is 3,000 hours, to establish a
95th confidence limit of 1E-4/hr requires 30,000
hours.  Thus, if a failure rate is believed from
generic data to be relatively low, one should
expect to have to collect a significant amount of
run time before making an impact on the generic
values.

“When failures are recorded the statistical
significance can be measured by the range from
the 5th to the 95th percentile confidence bounds.
This decreases with the number of failures.  For
a Poisson distribution, the range from the 5th to
the 95th percentile is on the order of 10, with 2
failures.  Thus, for greater than 2 failures the
sample is very loosely comparable to the
lognormal with an error factor of 3.  Thus, for a
population of components, a total number of
failures of 2 or more is a reasonable sample
when compared with typical generic data bases.
This is true for the binomial distribution also, as
it approximates the Poisson distribution when
the parameter, p, is on the order of 10-3.  These
considerations can be used to establish a
reasonable time frame for data collection.
Suppose, the generic data is on the order of l0-

3per demand, and there are four components in
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the population with approximately one demand
per component per month per ISI tests.  To get 2
failures, we would expect to require about 2/p
demands, or 2,000 demands.  There are 48
demands per year, therefore data from 41 years
would be required to produce this statistically
meaningful data.  This illustrates the importance
of making sure that all the demands are counted
and also of increasing the size of the population
if at all possible.”

5.2.1.2 Data Collection

For the list of components and their failure modes
selected for data analysis, the system analyst must
retrieve all failure, maintenance, and test records for
each component from the raw data sources generated
during the data window.  The required records are
generally obtained based on the component
identification number.  Because the component
boundary can include multiple piece parts, the required
records may be kept under multiple identification
numbers.  However, for some components, the data
records for the different piece parts may all be kept
under the same identification number.  Thus, it is
necessary to list the identification numbers for all the
piece parts included in the component boundary
definition.

Because component failures are generally infrequent, it
is preferable to pool the data from several components
to obtain a larger data base.  For example, it is common
to group like pumps within a single system into one
population, but less common to group the pumps of
different systems (although it can be acceptable to
group pumps of different systems with similar
characteristics together into one population).  Any
grouping of components requires careful consideration
of the similarity of their design (e.g., size or
manufacturer), the frequency of operation, their
environmental operating conditions (e.g., temperature,
humidity, and radiation), operating modes (e.g., standby
versus normally operating or intermittently operating),
and the medium they carry (e.g., air,  pure water, or
borated water).  Tests for poolability of data are
described in Chapter 6. 

5.2.2 Event Screening and Severity
Classification

The raw data for a specific component will contain
some events that are not relevant to the component
failure modes being analyzed.  These events can be
screened from further analysis.  Some of the events will

be component failures that should be included in the
data assessment.  The type of component failures will
determine how they are classified and subsequently
used to generate the required component failure data.
Guidance for both event screening and classification  is
provided below.

5.2.2.1 Event Screening

One consideration in the identification of plant-specific
data is whether design changes have been made to the
plant or its components that invalidate some of the
historical data.  For example, changing the type of flow
controller could impact the operation of a particular
turbine-driven pump. Thus, the total historical count of
the turbine-driven pump events is not valid for the
current condition of the plant.  Typically, the turbine-
driven pump data prior to the  design change would be
deleted from the data analysis.  However, this has the
undesirable impact of reducing sample size. Another
approach is to investigate whether there is indeed a
significant difference in the fraction of events before
and after the design change.  Not all the failures may be
invalidated by the design change and so the historical
data prior to the design change implementation may
have partial validity and could be included in the data
analysis.  

Consideration of design changes is one example of
where censoring of data can and should be performed.
Other reasons can be used for data censoring if they are
well supported and valid.  For example, it is not
uncommon to eliminate data from the first year  of plant
operation since it represents failures that occurred
during the plant break-in period.  However, any data
censoring should be approached carefully to avoid
losing important information and biasing results
(eliminating the first year of data actually makes the
results less biased).

5.2.2.2 Event Severity Classification

As discussed in Chapter 3, component malfunction
events are commonly classified into one of the
following three event severity categories:

• catastrophic failures,
• degraded failures, and
• incipient failures.

Catastrophic failures require some kind of repair or
replacement action on the component in order to restore
the component to operability.  Events that are classified
as catastrophic failures are used in calculating plant-
specific component failure rates and probabilities of
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failure on demand.  Information on catastrophic failures
occurring during critical operation is also used in
calculating  maintenance outage unavailabilities.

Degraded failures can prevent a system or train from
meeting the success criteria modeled in the PRA.  An
incipient failure is such that there is no significant
degradation in performance but there are indications of
a developing fault.  The difference between the two is
generally a matter of severity.  Events classified as
incipient or degraded failures are generally used in
calculating plant-specific maintenance unavailabilities.
Although both degraded and incipient failures will
typically lead to a corrective action, the corrective
action may or may not make the component unavailable
to perform its function.  For example, maintenance on
the operator of a valve that is normally open will not
lead to the unavailability of the valve if is  required to
open for system operation.  This illustrates the
importance of ascertaining from event records the
modes of a component operation that a corrective action
would prevent. 

Sometimes the event information is so unclear and
incomplete that a definite classification of the severity
of a component malfunction event is not possible.  The
data analyst in this situation is faced with the difficult
task of deciding whether to call a malfunction a failure
or not.  The inability to distinguish between severity
levels of failures is particularly important.  The
difference between the probabilities of catastrophic and
degraded modes of failures can be significant especially
when dealing with highly reliable components that
rarely fail.  The difference between no failures and one
failure in estimating the failure rate is much more than
the difference between 10 and 11 failures.  Thus, the
data analyst must be careful when classifying the few
failures that may have occurred.  In the absence of
sufficient information, the tendency is to conservatively
record such events as catastrophic failures.  This is
reasonable as long as the impact on the final PRA
results is not significant.  For cases where the
judgement of the data analyst is important to the PRA
results, it could be incorporated explicitly into the PRA
quantification as a source of uncertainty.  This issue is
discussed further in Section 6.1.2.2.

5.2.3 Component Data Allocation

This section gives guidelines on the allocation of plant
specific events to each component failure mode of
interest.  This includes the allocation of events
contributing to the unavailability of components or
systems due to test and maintenance actions.  The goal

of this allocation process is to correlate each event
report with one or more basic events of the PRA model.
This requires that the event report be identified with a
specific component, and that the severity of the event be
determined and associated with the proper component
failure mode(s).

The use of component identification numbers in event
reports is generally sufficient to allocate the event to a
particular component.  The description of the event can
also guide the data analyst to a particular component
failure mode (i.e., a basic event in a fault tree), or in
some cases, to a particular gate in a fault tree.
However, a thorough review of the cause of the event
together with a knowledge of the boundaries of the
basic events of the fault trees is generally needed for a
correct allocation to be made.  For example, an event
report identified with a specific motor-operated valve
(MOV) that involves the deenergization of a 480V bus
should be associated with the bus unavailability and not
the MOV.  If the event is a local fault of the MOV or its
breaker, it is associated with MOV itself. 

As discussed previously, the severity of the event is
important in allocating the event to specific component
failure modes.  A catastrophic component failure will
generally result in an extended period during which the
component is unavailable while it is being repaired.
Thus, an event involving a catastrophic failure must be
counted in estimating the failure of the component to
operate and in estimating its unavailability due to
maintenance.  Degraded and incipient failures are used
in calculating plant-specific maintenance
unavailabilities.  Some degraded failures may result in
sufficient degradation that it can not meet its required
success criteria (e.g., the flow rate for a pump is
reduced to 300 gpm when 500 gpm is required for
success).  In such cases, a degraded failure is also
included as a component failure to operate. 

5.2.3.1 Component Failure Event Allocation

Because of the variability in the level of reporting
associated with maintenance events, the allocation of
event reports to specific PRA model events can be a
subjective process.  The following are some ground
rules to help perform the component failure event
allocation.  The majority of these ground rules  have
been  identified and published in EPRI TR-100381
(EPRI 1992).  Additional guidelines are based on the
experience of PRA vendors and NRC data analysts. 
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1. For standby components such as pumps, diesel
generators, and fans, PRA models generally
distinguish between failure to start and failure to
run modes.  It is important to understand the
definition of each failure mode in order to
associate historical maintenance events with the
different basic event types.  For example, if a fault
tree basic event represents a failure of a pump to
start, it usually means exactly that.  However, it is
not unusual in PRAs to define “diesel generator
fails to start” as encompassing a failure to start or
a failure during the first hour given that the start
was successful.  Whatever definitions are used, the
event allocation must be performed to match them.

2. As indicated in Chapter 2, there are two ways to
model failures to start: the demand failure and
standby failure models.  In the demand failure
model, the equipment is ready to operate but for
some reason, does not start or change state when
demanded.  In the standby failure model, the
equipment has developed an unannounced
condition that will prevent it from starting when
demanded.  When reviewing raw data, it can be
difficult to identify whether a component failed on
the demand or prior to the demand.  Thus, as
indicated in Section 2.3.4, either model could be
used in this situation.  The demand failure model
provides the higher failure probability.

3. A catastrophic or degraded failure that is revealed
while a component is in the standby mode, and that
results in a maintenance action,  is accounted for in
the unavailability due to maintenance event for that
component.  If the failure is such that it could also
occur while the component is performing its
mission, it should also be counted as a component
failure.  For example, external leakage above
allowable amounts from a standby pump that
requires isolation of the pump to repair it,
contributes to the unavailability of the pump due to
maintenance.  Since such leakage could occur
during pump operation, the event should also be
used to determine the failure rate for pump
leakage.  The amount of leakage would have to be
sufficient to prevent the pump train from delivering
the required flow. 

4. Catastrophic failures of standby equipment to start
(or run) that occur during an actual component
demand, contribute to that failure mode.  Similarly,
failures to start (or run) during tests that closely
mimics the conditions that the component would be
subjected to during an unplanned demand should

also be included in the evaluation for the
component failure mode. 

 
5. Degraded failures that are not serious enough to

prevent the component from performing its
function are not included as failures of the
component.  Expressed in another way, the failure
of the component must match the definition of the
failure in the PRA model.  For example, vibration
in a pump that results in the pump only delivering
500 gpm instead of the rated flow of 600 gpm is
not a failure event if 500 gpm is sufficient to meet
its function and the pump continued to supply that
flow for a period at least equal to the mission time
required in the PRA model.  However, such
failures would be included in the unavailability due
to maintenance since their effect is to induce
maintenance activity.

There is a caveat to this guideline to consider.  If
the degraded failure is revealed in a short test
duration, an analyst cannot be sure the component
would have succeeded over its mission time.  In
this case, the analyst can attempt to extrapolate the
rate of degradation to determine if the component
would meet its failure criteria sometime during its
mission time.  For example:  a pump develops a
slow oil leak during a test.  If the rate of leakage is
such that the pump would run out of lubricating oil
during the required pump mission time as modeled
in the PRA, than the event is considered as a pump
failure to continue to run.

6. Degraded conditions for which a failure would
have occurred if the system had been demanded are
considered a failure.  For example, if an operator
discovers that a pump had no oil in its lubrication
reservoir, the pump may have started (unless there
was an interlock preventing a pump start on low oil
level) but likely would not have run long.  In either
case, this event would be counted as a failure to
start.

7. If the event report identifies that the failure of
component A is the result of the failure of another
component B that is modeled explicitly in the
PRA, the event is associated with component B
and not with component A.  For example, failures
of a pump from plugged suction screens should not
be allocated as pump failures if the screens are
modeled separately. 

The clear identification of the component boundary
is an important factor in these situations.  For
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example, the allocation of an event that identifies
the failure of an emergency pump due to the failure
of a safety actuation signal is dependent upon
whether the actuation logic is included in the pump
boundary or is treated as a separate event in the
model.  Typically, the components related to the
safety actuation signal are not included in the pump
boundary definition and this event should not be
counted as a pump failure.  However, if the safety
actuation signal is included in the pump boundary,
then the command fault should be included as a
failure mode of the pump.

8. An event reporting a degraded or failed state of a
redundant piece part should be excluded from the
failure events if the component boundary includes
the redundant piece parts.  For example, if a diesel
generator has two redundant air start motors that
are included in the diesel generator boundary
definition, failure of one air start motor would not
be counted as a failure of the diesel generator.
This example illustrates how a coarse definition of
a component boundary can result in the failure to
account for some degraded component states. 

9. If a documented failure during a test or actual
demand could not be repeated on subsequent tries,
it may not have be included as a potential failure.
Similarly, events which are very quickly
recoverable may also not be considered potential
failures (the recovery should not be included in the
PRA model) .  Whether an event meeting either of
these situations  should be considered a failure is a
function of the success criterion for the component
in terms of the time window within which it has to
operate.  For example, the spurious closure of an
MOV may prevent the injection of coolant into the
core from a particular system.  However, the event
records may indicate that in all such occurrences,
the valve was quickly reopened before coolant
levels dropped to unacceptable levels.  In such
cases, the events should not be considered as
failure events for the MOV.

10. Successive failures of the same components over
short time intervals should be counted as a single
failure.  Similarly, failures of a component during
post-maintenance testing where the failure is
related to the maintenance or to an earlier failure
that the maintenance was trying to correct should
be considered as a continuation of the original
failure and should be disregarded.  The successive
failures are because proper maintenance was not
performed to fix the initial problem, and the
component is still in the failed state.

11. If failures resulting from human errors after testing,
maintenance, and instrument miscalibrations are
explicitly included in system models, these events
should not be included as component hardware
failure events.  Such events are typically quantified
using human reliability analysis methods.
However, some PRAs have not explicitly included
these human errors in the models.  In such cases,
the contribution from human-related failures
should be incorporated into the appropriate
component failure rate or probability. 

12. An event reported as a failure to meet technical
specifications, but which would not result in a
catastrophic failure in the PRA sense should not be
included, but it may lead to a maintenance
unavailability.  For example, the failure of a diesel
generator to start and pick up loads within 10
seconds might be a reportable failure for regulatory
purposes.  However, in the PRA sense it is not a
failure if the diesel did not pick up loads in 10
seconds and the “failure” did not have a discernible
effect on the ability of the plant to mitigate an
initiating event.  However, this failure would
require maintenance to alleviate the fast loading
failure.

13. Failures that occur under abnormal environmental
conditions should be segregated from failures that
occur under normal conditions.  These failures can
identify important interactions between systems
and thresholds for failure that should be accounted
for in the PRA.  In general, PRAs assume
components fail under harsh conditions.  Under
this assumption, actual failure events in harsh
environments can be eliminated from
consideration.  For example, actual failures of
electrical components following a loss of a heating,
ventilation, or air-conditioning (HVAC) system
should be eliminated from the data analysis if the
HVAC dependency is modeled explicitly in the
PRA model and the component is always assumed
to fail under those conditions.  However, if there
are also many component successes under the same
harsh environments, than a component failure
probability under those conditions can be
calculated and used in the PRA model conditional
on the occurrence of the harsh environment.

5.2.3.2 Allocation of Unavailability Data

Unavailability occurs primarily due to maintenance
activities but some minor contributions can also result
from testing performed during periodic surveillance
activities.  These unavailability contributions can be
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included in a system model at a component, segment, or
train level.  In addition, separate basic events for
maintenance and testing unavailabilities, or for planned
and unplanned unavailabilities can be included in
system models.  In a data analysis, the allocation of
unavailability data must be performed to match the
basic events in the system models. The following
guidelines are useful in allocating events for
determining unavailabilities due to test and
maintenance.  These ground rules  have been extracted
from EPRI TR-100381 (EPRI 1992) and from the
experience of PRA vendors and NRC data analysts. 

1. A maintenance event must result in the component
not being capable of performing its function, as
modeled in the PRA, in order to contribute to the
component or train unavailability.  For example,
maintenance performed on a normally open MOV
(that is required to stay open during its mission
time) with the valve locked in the open position is
not an event of interest.  Similarly, a maintenance
event involving some electrical repairs on an MOV
that do not necessitate moving it from the position
required for successful system operation is also not
an event of interest.  However, in either case, if the
valve were required to close for any reason, then
both events would be of interest.  

2. Some testing procedures may result in component,
train, or system unavailability.  For example, a full
flow test of a system through a test path could
require that a normally closed injection valve be
disabled in order to prevent inadvertent injection.
The injection valve would be unavailable during
the test period.  However, systems often have logic
which would actuate the system even if it was
being tested.  In this situation, there would be no
system unavailability due to the test.  A review of
testing procedures coupled with knowledge of
system actuation logic is required to determine if
testing can result in component, train, or system
unavailability.

3. If a maintenance report indicates that one or more
trains of front line systems are unavailable due to
maintenance activities of a support system, the
unavailability is associated only with the support
system.

4. If while performing maintenance on a support
system, maintenance is also performed on the front
line system it supports, the unavailability of the
front line system should be counted if the two
maintenance activities are not always performed
together. 

5. If an unavailability on one component is actually
due to maintenance activity on another component
that is included in the PRA model, the
unavailability is associated with the second
component only.  For example, a declared
unavailability of a pump due to maintenance on a
room cooler should be included only as a
maintenance on the room cooler if the dependence
of the pump on the room cooler was modeled
explicitly.  As another example, if the maintenance
results in the unavailability of a source of suction
to a pump (e.g., maintenance on a supply tank),
then it is better to model this as an unavailability of
the source rather than the pump.  Assigning the
event to the source unavailability is absolutely
required if the source is shared with other pumps.
In general, maintenance  unavailability should be
allocated consistent with the component
boundaries and system modeling.

6. There may be events where the unavailability of a
component in a system model is due to
maintenance on a component that is not included in
any system model.  In such cases, the event should
be included as an unavailability of all the modeled
components removed from service.  For example,
the contribution of maintenance on a drain valve
for a pump train will likely not be modeled in the
PRA but should be included as a contributor to the
unavailability of the entire pump train since it
would likely result in isolation of the train.

7. Coincident outage times for redundant equipment
(both intra- and inter-system) should reflect actual
plant experience.  For some systems, the available
redundancy may be higher than that limited by
technical specifications.  In this case, maintenance
may be performed on two out of three trains at the
same time.  The modeling of dual component
maintenance events in the PRA should be
consistent with the actual plant experience.  Note
that because of the allowed outage time limitations
in technical specifications, the maintenance
unavailability may be lower when two trains are
taken out for maintenance.

8. The maintenance data at the plant most likely will
contain planned and forced maintenance.  Most of
the maintenance events will be forced type.  If the
PRA models the two types of maintenance
separately and it is possible to distinguish between
the two types in the data, these should be recorded
separately.
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9. In some cases, more than one maintenance activity
may be recorded on an event report.  When this
occurs, each separate maintenance activity  must be
considered at the highest possible component level.
For example, if the suction or discharge valve of a
pump requires maintenance, the pump would be
tagged out for the duration of the work.  As
previously discussed, the maintenance
unavailability should be associated with the valve.
If during this maintenance outage, some minor
maintenance was performed on the pump, than the
entire maintenance outage can be recorded as a
pump maintenance event.  The duration of the
maintenance would be the time between when the
first component is tagged out and when the last
component is tagged in.

However, if the maintenance unavailability is being
modeled in the PRA at the train level, all
maintenance activities on any component are
included.  In this situation, each maintenance event
on any component in the train is included.  If
multiple components are tagged out during the
maintenance event, the duration of the maintenance
would be the time between when the first
component is tagged out and when the last
component is tagged in.

10. Functional dependencies represented in the PRA
models must be considered in the allocation of
maintenance events.  For example, if a chilled
water pump is taken out for maintenance, together
with an HVAC chiller that it supports, only the
chilled water pump is counted as being unavailable
for maintenance. The functional dependency
between the two components in the PRA model
will account for the chiller being unavailable when
the chilled water pump is under maintenance.

11. The cold shutdown periods in the time window
over which data are being collected should be
defined. The maintenance performed during
shutdown is not included in the determination of
component unavailability during power operation.

12. Special attention is required when allocating
maintenance events for systems or components
shared between units at a site.  The technical
specifications pertaining to shared systems can be
different depending on the status of both units.
The PRA model may include basic events to
account for the dependence of the system
unavailability on the mode of operation for each
unit.  In such cases, the maintenance events should
be allocated to match those event definitions.

5.2.4 Component Exposure Evaluation

The data identification and allocation process discussed
in the previous sections results in the identification of
the number of events associated with each component
failure mode.  To generate component failure
probabilities and rates, it is also necessary to estimate
the operational exposure of the components.  The term
“exposure” refers to the amount of component
operating time when considering failure rates and to the
number of demands (or cycles) when considering
failure probabilities. 

Exposure data are normally developed by reviewing
plant documents; e.g., test procedures and the
knowledge of component function (standby, normally
operating, etc.), and systems lineup.  In some cases, an
operation time meter provides information about the
cumulative hours of operation of a component. 

Development of exposure data involves many
judgments and assumptions.  The guidance provided in
this section sometimes leads to an approximate value
for the exposure data, which may differ substantially
from the actual experience.  Although typically the
range of uncertainties associated with the exposure data
are much smaller than those for the failure data, there
may be cases where the combined effect of uncertainty
about the exposure and failure has a significant impact
on the estimate of the failure rate or probability.  The
issue of uncertainty in the data (both in the failure and
exposure data) is addressed in Section 6.1.2.2 of this
handbook.  

The following sections outline the process for
estimating the number of demands and the operating
time for each component.  Much of this guidance is
taken from EPRI TR-100381 (EPRI 1992).

5.2.4.1 Time-Related Exposures

The operating or exposure time for a component is
dependent upon whether the component is normally
operating or is in standby.  For components that are
required to continuously operate during  a particular
plant mode, the operating time can be easily established
by directly relating it to the time spent in that plant
mode.  

Some plant systems, sometimes called alternating or
intermittently operated systems, have multiple
redundant trains where only a subset of those trains are
required to operate at any one time.  A standard practice
at nuclear power plants is to alternate the trains that are
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operating and in standby at specified intervals.  The
times of operation and changeover from one train to
another are typically recorded in the control room or
some other  log book.  However, since the pumps in
different trains of a system are usually grouped together
for data analysis, it is not necessary to have an accurate
log of how long an individual pump was in operation.
Instead, it is only necessary to evaluate the exposure
time for the pumps as a group.  For example, if two of
three pumps are normally operating in a particular plant
mode, the total operating time for that pump group is
twice the calendar time spent by the plant in that mode.

For a component in a standby system, the operating
time is generally given by the time the system is
operated during testing.  Note that an important
criterion for including test data when evaluating both
the failure and exposure data is that the test should
mimic the component operation that would be required
in an unplanned demand.  The testing period may be
recorded in control room logs or other logs.  The
operating time during testing for a population of
components may also be estimated by summing the
product of the component population, test frequency,
and test duration for each test during the period where
failure data was collected.  It should be noted that for
most plants, and most components, the cumulative run
time during testing is relatively short. 

Some systems that are in standby during normal power
operation are also used during other modes of
operation.  For example, the residual heat removal
(RHR) system in both BWRs and PWRs is used during
shutdown.  Similarly, a standby system may be used
during power operation for a special purpose.  For
example, the RHR system in a BWR may be used to
increase or decrease the suppression pool level.  Thus
the operating times during these modes of operation
should be included, in addition to the run times during
testing, if any failures during these modes are pertinent
to the safety function of the system (e.g., the entire
RHR pump operating history may be pertinent since the
pump must operate when the RHR system is used to
respond to an accident).  In such situations, the times of
startup and shutdown of the standby system may be
recorded in the control room logs.  Alternatively, if the
component is required to continuously operate during
shutdown , the operating time can be easily established
by directly relating it to the time spent in that plant
mode.

5.2.4.2 Demand-Related Exposures

To evaluate the probability of the failure of a
component to start or change states, the number of

demands experienced by the component must be
evaluated.  Although this would seem to be a simple
process, in practice the number of demands is often one
of the most difficult parameters to calculate accurately.
Component demands from all contributors should be
included.  This can include contributions from testing,
automatic and manual actuations, and corrective
maintenance.  The methods of calculating the number
of demands from each of these types of demands are
explained below.

5.2.4.2.1 Test Demands

Periodic testing is an important source of demands for
components in standby systems. The surveillance
testing and required frequency for the plant is
performed in accordance with the technical
specifications.  However, some plants may choose to
perform testing more frequently than required by the
technical specifications.  

An important criterion for including test data in
evaluating both the failure and exposure data is that the
test should mimic the component operation that would
be required in an unplanned demand.  

Surveillance procedures identify the components that
must change state at each test.  For each surveillance
test pertinent to the system, it is important to identify
which components are operated, the unavailability of
the system during the test (if applicable), and the
frequency and duration of the test.  A functional test of
a pump often requires the operation of valves as well as
the pump and is an important source of information on
valve demands.  Neglecting demands on components
from tests on other components can lead to a significant
underestimation of the total number of demands.  The
number of test demands for individual components may
be determined from the actual number of tests as
recorded in a control room or test logs or be estimated
based on the test frequencies. 

It should be noted that the test may not be a valid test
for all the components within the component boundary.
For example:  the automatic initiation portion of a
component circuit will not be tested during a test where
the component is manually initiated.  For components
such as diesel generators, tests which start the engine,
but do not close the breaker onto the bus are not true
tests of the capability of the diesel generator to provide
the necessary load.  Note that if there is a
subcomponent that is included in a component’s
boundary which is not tested along with the rest of the
component, it is desirable to analyze it as a separate
component.
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5.2.4.2.2 Automatic and Manual Initiation

Actual unplanned demands on components should be
included in the demand count.  For standby safety
system components, some unplanned demands can be
traced back to the occurrence of automatic initiation
signals (both actual and spurious signals).  These
signals include emergency core cooling system (ECCS)
initiating signals, turbine trip signals, losses of offsite
power, and reactor scrams.  Different groups of
component may be initiated by different signals or sets
of signals, depending on the functions and the system
they are in.  Information on the components that can be
initiated by each signal can be identified through
knowledge of the plant.  For example, all low-pressure
ECCS pumps in a BWR could be initiated by an ECCS
signal but the motor-operated valves in the ECCS
injection paths would require an additional low vessel
pressure signal before they would open.  Information on
the historical number of occurrences of actual or
spurious signals should be available from the plant
records such as the monthly operating reports or control
room logs. 

In addition, manual actuation of systems or components
may occur during plant operation.  Two examples cited
above in the discussion of operating time contributors
are also pertinent here.  The first is the case where
alternating trains are placed in operation and standby.
The act of switching operating trains results in demands
on components.  The second case involves the use of
standby systems to perform special functions.  For
example, the RHR system in a BWR may be used to
increase or decrease the suppression pool level. These
special uses also result in component demands.  In both
cases, the times of startup and shutdown of the standby
system may be recorded in the control room or other
types of logs.

Finally, manual actuation of systems to respond to
adverse plant conditions is another source of unplanned
demands that needs to be accounted for in the exposure
evaluation.  The occurrences of such demands are
generally recorded in LERs, control room logs, and
monthly operating reports.
  
5.2.4.2.3 Corrective Maintenance

Maintenance can result in demands on components in
several ways.  Before the maintenance activities are
begun, the operating and maintenance staff make the
maintenance action safe for both personnel and the
system by disabling and tagging out appropriate
components.  This then requires some components to
change state resulting in a demand.

In many instances, demands are placed on components
that are not the subject of the corrective maintenance.
The most obvious demands occur when a component is
returned to service.  Before restoring the component to
service following maintenance, a complete functional
checkout is usually performed on the component and
other components in the functional loop. The number of
demands on the components resulting from corrective
maintenance is obtained from the number of
maintenance acts on specific components and an
identification of what other components may have to
change state to complete the functional test.  Note that
per the guidance in the ASME PRA Standard
(ASME 2002), demands from post-maintenance
testing should be excluded from the exposure
evaluation for the component under maintenance.

Another example of a demand resulting from
maintenance involves testing of redundant trains.  If
equipment fails in some systems, the technical
specifications may require that redundant components
be checked for operability before maintenance to ensure
that they are available for service.  In many cases, an
increased frequency of surveillance testing of such
redundant components is required.  A typical example
of this is reflected in the technical specifications for
emergency diesel generators.  These demands need to
be included in the data analysis.   

As indicated in the discussions presented above,
development of exposure data involves many judgments
and assumptions. Although typically the magnitude of
error or the range of uncertainties associated with the
exposure data are small compared with those of the
failure data, there are cases where the combined effect
of uncertainty about the exposure and failure has a
significant impact on the estimate of the failure rate.
The data analyst should consider some level of
uncertainty in using such estimates.  

5.2.5 Determination of Unavailable Time

Following the identification of the maintenance events
contributing to the unavailability of a component, train,
or system, the time the component is unavailable during
each event is determined.  The unavailability time is the
time between when the component is removed from
service until it is actually restored to service.  In many
cases, maintenance work orders will provide this
information by identifying one or more tag-ins and tag-
outs for equipment with the date and time of day that
both occur.  Using these times to determine the
unavailability time may be a little conservative because
the repair may be completed before the component is
declared tagged in. 
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Some maintenance work orders may contain multiple
tag-outs and tag-ins for a given component.  If the
component was operable between these periods, than
the unavailability is the sum of the individual
unavailability times for each period.  However, if the
component was inoperable between the periods, than
the unavailability time starts at the first tag-out and ends
at the last tag-out.

Unfortunately, the actual time of unavailability may not
be recorded in maintenance work order forms.  In many
cases, the time recorded may reflect a prior estimate of
how long the maintenance activity will take, may
represent the man-hours taken to complete the task
rather than calendar time, or may include time to
complete paperwork.

When the unavailability time is not specified in a
maintenance work order, other plant documents should
be examined for that information.  Maintenance activity
information may be recorded in other documents such
as operator logs or component operating logs.  For
example, a maintenance activity on a safety-related
component will start the clock for a limiting condition
of operation (LCO) specified in the technical
specifications, and this should be recorded in some
place, usually the control room log. The time when the
function is restored should also be recorded.
Unfortunately, not all maintenance events result in an
LCO and thus timing information may not be available.

When reliable estimates of the start and finish times for
a maintenance event are not available, one recourse is
to ask plant maintenance and operations staff to provide
estimates of the ranges in the unavailable time per
maintenance act for the components.  Another recourse
is to use data provided from some maintenance events
to estimate the unavailability for other events. 

5.3 Recovery Event Data

In PRA, there is a clear distinction between actions to
repair components or systems and actions to recover
components or systems.  Recovery actions involve the
use of alternate equipment or means to perform a
function when primary equipment fails, or the use of
alternate means to utilize equipment that has not
responded as required.  Examples of recovery actions
include opening doors to promote room cooling when
an HVAC system fails, recovering grid-related losses of
offsite power by rerouting power, manually initiating a
system when the automatic actuation signal fails,
bypassing trip logic using jumper cables, and using a
handwheel to manually open an MOV when the motor

fails to operate.  Repair actions involve the actual repair
of the mechanism which caused a component or system
to fail.  Examples of repair actions include repairing
weather-related losses of offsite power, repair of a
pump that failed to start, or replacement of a failed
circuit breaker.

PRA models typically include a number of recovery
actions of the type identified above.  However, because
recovery actions can involve complicated actions that
are governed by procedures, most are typically
evaluated using HRA methods.  A general exception is
the treatment of offsite power recovery where the
required recovery actions are often not within the
jurisdiction of the plant personnel.  Thus, offsite power
recovery data is collected and reduced for use in PRAs.

The repair of components is generally not modeled in
PRAs since:

• the time available to repair most components is
generally too limited  (i.e., core damage would
occur before the repair is completed), 

• because repair is an action that is not always
governed by procedures and thus difficult to
justify, 

• the availability of spare parts can not always be
certain, and 

• because abnormal procedures generally direct
operators to use alternative equipment as a first
priority.  

There are always exceptions to these general
observations.  For example, the replacement of fuses is
an action identified in some fire abnormal procedures
and can be accomplished rather quickly since spare
fuses are available.  As with a recovery action, either an
HRA or data reduction approach could be utilized to
generate a failure probability for a repair action.  

The modeling of recovery and repair actions in PRA
reflects the need to accomplish the action within some
time frame (e.g., before core damage occurs).  Thus, the
collected data must include both the time of failure and
recovery to be utilized in the PRA.  This section
provides guidance on the process for collecting and
reducing recovery and repair data.  A description of the
type of data that is reviewed in this effort and guidelines
for allocating that data.

5.3.1 Recovery Data Identification

Recovery and repair information can generally be
extracted from maintenance records and LERs that
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identify component and system failures.  Thus, the
evaluation of recovery and repair information is an
offshoot of the component failure data review.  In
general, only data from actual component and system
demands should be included in the recovery/repair data
evaluation.  When failures occur during actual
demands, operators should be strongly motivated to try
to recover the component or system.  

However, if a component or system fails to start during
a surveillance test, the need for repair is not as pressing
and thus not reflective of accident conditions.  For this
reason, recovery and repair information for failures
during surveillance tests should be excluded from
recovery/repair probability evaluation.

5.3.2 Recovery Data Allocation

Since component recovery data evaluation should be
performed in conjunction with the component data
allocation, the general rules provided in Section 5.2.3
apply.  In addition, the following guidelines are
provided to address allocating recovery data for other
events modeled in the PRA (e.g., restoring offsite
power or reopening main steam isolation valves):

1. Only failures during actual demands are included.
Failures during surveillance tests are excluded as
being nonrepresentative of accident conditions.
For the failures during actual demands, the data
analyst should assess whether the recovery/repair
action was performed under similar stresses that
would occur under accident conditions.  Atypical
events should be eliminated or considered to be
sources of uncertainty.

2. For each failure event, the recovery/repair time is
the time between when the failure first occurs and
the time when it is returned to service.  Using these
times ensures that the time of the failure, the time
required to recognize it has occurred, the time to
obtain spare parts if required, the actual time to
repair the component or system, and the time to
return the component to service are reflected in the
recovery/repair time.  Events that do not include
either time should be excluded from the evaluation.

3. Recovery information on systems or components
resulting from an initiating event can be extracted
from LERs or scram reports.  For example,
reopening MSIVs after their consequential closure
(i.e., they are signaled to close following some
other failure) may be included in a PRA for some
initiators.  The recovery time for such events are
evaluated from the time the initial failure occurs
leading to MSIV closure to until the closure signal
is removed (by either fixing the original failure or
by bypassing the signal) and the MSIVs in one hot
leg are reopened.  The time to perform other
actions that may be required to maintain the
MSIVs open (e.g., starting vacuum pumps) are also
included in establishing the recovery time.

4. Recovery information on systems or components
causing an initiating event can also be extracted
from LERs or scram reports.  For example, the
time to recover offsite power initiating events can
be extracted from LERs.  However, LERs should
also be searched for occurrences of offsite power
failure following other initiating events.  Recovery
information should also be extracted for these
events.
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6.4 Failure to Change State:
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Figure 6.1.  Schematic outline of Chapter 6.

6.  PARAMETER ESTIMATION AND MODEL VALIDATION

6.1 Overview

6.1.1 Chapter Contents

This chapter is the heart of the parameter-estimation
portion of this handbook.  Section 6.1 gives an impor-
tant discussion of Bayesian and frequentist inference,
and also a brief discussion of some topics outside the
scope of the handbook.  The rest of Chapter 6 presents
statistical techniques for analyzing data for various
parameters.  Sections 6.2 through 6.7 cover exactly the
same types of data as Sections 2.2 through 2.6, in the
same order.  The two kinds of failure to start in Section
2.3 are split into two sections here, 6.3 and 6.4.  The
three most extensive and fundamental sections are 6.2
(initiating events), 6.3 (failures on demand), and 6.6
(recovery times and other durations).  The remaining
sections draw on material from these three.  Figure 6.1
shows the contents in a schematic way, with arrows
indicating the logical dependencies.  For example,
Section 6.4 uses material presented in Sections 6.2 and
6.3.

Each section considers both parameter estimation and
model validation.  These two topics are considered

together because checking the assumptions of the model
(model validation) is a necessary part of any analysis.
Separating the model validation from the parameter
estimation might give the erroneous impression that it
is all right to estimate parameters without checking the
assumptions, or that the checks can be performed as an
afterthought.

Under parameter estimation, both Bayesian and
frequentist methods are presented.  Under model valida-
tion, both graphical methods and formal statistical tests
are given.

Much thought was given to the order of presentation: do
we present the Bayesian estimates first or the
frequentist estimates?  In Chapter 6, the frequentist
estimates are typically given first, not because they are
more important or more highly recommended, but only
because the frequentist point estimates are very simple,
the simplest most natural estimates that someone might
try.  We cover them quickly before moving on to the
more sophisticated Bayesian estimates.  In the cases
where the frequentist estimates are not simple (such as
certain distribution models for durations), Bayesian
estimation is discussed first.
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As in much of  this handbook, general explanations are
given in Roman typeface, with boldface used for new
terms where they are introduced or defined.  Arial font
is used for examples, and for any extended discus-
sion that applies only to a particular example.

6.1.2 Bayesian and Frequentist Inference

Probabilistic risk assessment (PRA) analyzes accident
sequences in terms of initiating events, basic events,
and occasionally recovery events. 

This handbook is concerned with estimating the fre-
quencies of  initiating events, the probabilities of basic
events, and the distributions of recovery times and other
durations.  These estimates are propagated through
logical relations to produce an estimated frequency of
the undesirable end state, such as core damage.  More-
over, the uncertainties in the parameter estimates must
be quantified, and this must be done in a way that
allows the uncertainty in the final estimate to be quanti-
fied.

Two approaches to estimating parameters are the
Bayesian method and the frequentist, or classical,
method.  The two approaches are summarized here, and
also in Appendix B.

Both approaches use probability distributions to de-
scribe the behavior of random outcomes, such as a
random number of initiating events or a random number
of failures to start.  The two approaches differ in the
way they treat uncertainty of unknown parameters.

In the Bayesian setting, probability is a measure of
uncertainty, a quantification of degree of belief.  The
Bayesian methodology is used to modify uncertainty in
a logically coherent way, so that “degree of belief” is
rational, not merely personal opinion.  In this methodol-
ogy,  each unknown parameter is assigned an initial
prior probability distribution.  This does not mean that
the parameter varies randomly, but only that it is
unknown, with the probability distribution modeling
belief concerning the true value.  Based on data, the
analyst’s prior belief about the parameter is updated,
using Bayes’ Theorem.  The final inference statement
uses the posterior distribution of the parameter to
quantify the final uncertainty about the parameter.  It is
conditional on the observed data.  Siu and Kelly (1998)
give a simple but thorough introduction to Bayesian
estimation in the PRA context.

The frequentist approach is quite different.  The proba-
bility of a random event is defined as the long-term
fraction of times that the event would occur, in a large

number of trials.  Probabilities are used only for random
quantities, the possible data values.  Probability distri-
butions are never used to describe parameters, because
the parameters are not random.  When quantifying
uncertainty in an estimate, a frequentist asks questions
such as, “Under similar conditions, what other data sets
might have been generated?  From data set to data set,
how much variation would be seen in the parameter
estimate?  For any one data set, how far might the
estimated parameter be from the true parameter?”  Any
prior or external information about the parameter value
is ignored.

Statisticians have argued vigorously over which ap-
proach is preferable.  When estimating parameters for
PRA, the Bayesian approach clearly works better, for
two reasons.  First, data from reliable equipment are
typically sparse, with few or even zero observed fail-
ures.  In such cases, it is reasonable to draw on other
sources of information.  The Bayesian approach pro-
vides a mechanism for incorporating such information
as prior belief.  Second, the Bayesian framework allows
straightforward propagation of basic event  uncertain-
ties through a logical model, to produce an uncertainty
on the frequency of the undesirable end state.  To do
this, it assigns a probability distribution to each of the
unknown parameters, draws a random sample from
each, and constructs the corresponding sample for the
frequency of the undesirable end state.  The frequentist
approach cannot handle such complicated propagation
of uncertainties except by rough approximations.

Frequentist methods have their uses, however, even in
PRA.  Box (1980) writes “sampling theory [the
frequentist approach] is needed for exploration and
ultimate criticism of an entertained model in the light of
current data, while Bayes’ theory is needed for estima-
tion of parameters conditional on the adequacy of the
entertained model.”  This viewpoint agrees with current
PRA practice.  The primary use of the frequentist
approach is in preliminary examination of the data, to
check the correctness of model assumptions, and to
decide which model to use.  For example, frequentist
methods can help the analyst decide whether data sets
may be pooled or whether a trend is present.
Goodness-of-fit tests and calculation of statistical
significance are commonly used frequentist tools in this
context.  Then Bayesian methods are used for estimat-
ing the parameters.  In addition, frequentist estimates
are often simpler to calculate than Bayesian estimates,
and therefore are useful for rough approximate calcula-
tions.

Table 6.1 summarizes the above points.
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Table 6.1  Comparison of Bayesian and frequentist approaches in PRA.

Frequentist Bayesian

Interpretation of probability Long-term frequency after many 
hypothetical repetitions.

Measure of uncertainty, 
quantification of degree of belief.

Unknown parameter Constant, fixed. Constant, but assigned probability dis-
tribution, measuring current state of
belief.

Data Random (before being observed). Random for intermediate 
calculations.  Fixed (after being 
observed) for the final conclusions.

Typical estimators Maximum likelihood estimator (MLE),
confidence interval.

Bayes posterior mean, credible
interval.

Interpretation of 90%
interval for a parameter

If many data sets are generated, 90% of
the resulting confidence intervals will
contain the true parameter.  We do not
know if our interval is one of the
unlucky ones.

We believe, and would give 9 to 1
odds in a wager, that the parameter is
in the interval.

Primary uses in PRA 1. Check model assumptions.
2. Provide quick estimates, without
work of determining and justifying
prior distribution.

1. Incorporate evidence from various
sources, as prior distribution.
2. Propagate uncertainties through
fault-tree and event-tree models.

6.1.3 Uncertainties Other Than 
Parametric Uncertainty

The above discussion might suggest that uncertainty in
the value of parameters is the only uncertainty there is.
That is not the case.  Parameter uncertainty, stemming
from having only a relatively small set of randomly
generated data, is the simplest uncertainty to address.
It is the primary uncertainty considered in this
handbook of parameter estimation.  However, the
following kinds of uncertainty can also be considered.
Because these subsections discuss material that is
outside the scope of the handbook, first-time readers
may wish to skip immediately to Section 6.2.

6.1.3.1 Uncertainty from Nonrepresentativeness 
of the Data Sources

One issue to consider is that the data come from settings
that do not perfectly match the problem of interest.  In
general, this is a difficult issue.  For example, suppose
one situation is of interest, but the data come from
equipment with a different manufacturer or different

design, or from equipment operated under different
conditions, or maintained with different practices.  Then
it is difficult to quantify the relationship between the
data and the problem of interest.  Engineering judgment
is used, and to be conservative the uncertainty
distribution is often assigned a larger variance than the
data alone would call for.

One tractable case is uncertainty of the value of a
parameter for one data source (such as one nuclear
power plant), when data are available from many
similar but not identical data sources (other nuclear
power plants).  This case can be formulated in terms of
a hierarchical model, and analyzed by empirical Bayes
or hierarchical Bayes methods, as discussed in Chapter
8 of this handbook.

6.1.3.2 Uncertainty in the Data Counts 
Themselves

There can be uncertainty in the data counts themselves.
For example:  it may be unclear whether a particular
event should be counted as a failure, or the number of
demands may not be known exactly.  A Bayesian
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method for dealing with uncertainty in PRA data was
first proposed by Siu and Apostolakis (1984, 1986), and
has been used by several authors, including Mosleh
(1986), Mosleh et al. (1988, Section 3.3.4.4), and Martz
and Picard (1995).  As outlined by Atwood and Gentil-
lon (1996), uncertainty in classifying the data yields a
number of possible data sets, each of which can be
assigned a subjective probability.  The simple approach
is to use an “average” data set, a “best estimate” of the
data, and analyze it.  The uncertainty in the data is
ignored, lost, at that point.  A better approach is to
analyze each data set, and combine the results.  Each
analysis produces a Bayesian distribution for the
unknown parameter(s), and the final result is a mixture
of these distributions.  This approach includes the data
uncertainty in the analysis, and results in wider
uncertainty intervals than the simple approach.  The two
approaches are diagramed in Figure 6.2.

Data uncertainty has become the subject of recent
journal articles, such as the by Martz and Hamada
(2003), who develop a fully Bayesian method.  Also,
this topic is closely related to a statistical technique
called “multiple imputation” (see Rubin 1996), in which
a moderate number of data sets are randomly generated
and then treated according to the left path in Figure 6.2.
Further treatment of this topic is beyond the scope of
this handbook, but the reader can find additional
guidance in the references cited above.

6.1.3.3 Uncertainty in the Correct Model to Use

There can be uncertainty in which probability model to
use.  For example, there may be a slight trend, but it is
borderline.  Should a trend be modeled?  Chapters 6
and 7 of this handbook discuss model validation

extensively.  However, model validation, which
concludes that the model is either “adequate” or “not
adequate,” is only a first step toward addressing this
issue.

A more ambitious approach would be to quantify the
degree of belief in each of a number of models, and
propagate uncertainty in the models into the overall
conclusions.  This approach can use the predictions of
various models as evidence in a formal Bayesian
estimation procedure.  See Mosleh et al. (1994) for a
number of thoughtful papers on the definition and
treatment of model uncertainties in the context of PRA
applications.  The topic is also discussed and debated in
a tutorial article by Hoeting et al. (1999).  Bernardo and
Smith (1994) also work out this approach in their
Chapter 6 on “remodelling.”  Drougett (1999) includes
a discussion on the role of information concerning the
models themselves (for example, their structure and
past performance) in the estimation process.

Further consideration of such issues is beyond the scope
of this handbook.  The parameter uncertainties given
here all assume that the model is a perfect description
of the real world.

6.2 Initiating Events

This section and Section 6.3 are fundamental.  The
methods introduced here are used throughout the rest of
the handbook.  The most important topics for a first-
time reader are:

• Maximum likelihood estimation (6.2.1.1),
• Bayesian estimation, especially with a discrete

prior or a conjugate prior (6.2.1-6.2.2.5), and
• Model validation, especially using graphical tools

(portions of 6.2.3).

Initiating events here use the broad definition of the
examples in Section 2.2, events that occur randomly in
time and that initiate a quick response to restore the
system to normal.

The event frequency is denoted 8, with units events per
unit time.  The data consist of x observed events in time
t, where x is an integer $ 0 and t is some time > 0.
Note, t is considered nonrandom, and x is randomly
generated.  This can be expressed using the notation
given in Appendix A, with upper case letters denoting
random variables and lower case letters denoting
numbers.  Before data had been generated, the random
number of initiating events would have been denoted by
X.  For any particular number x, the probability of x
initiating events in time t is

Pr(X = x) = e!8t(8t)x/x! . (6.1)

Many possible data sets,
with subjective probabilities

Many analysis results                      Mean data set

Mean of results                    Results from analysis
                                                      of one data set

Averaging the                               Analyzing the
analyses accounts for        average accounts for
more uncertainty.                     less uncertainty.

Figure 6.2  Two possible analysis paths for uncertain
data.
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Figure 6.3  Likelihood as a function of 8, for data of
Example 6.1.

This formula for the Poisson distribution is a
restatement of Equation 2.1, and will be used through-
out this section.

The methods of parameter estimation will be illustrated
by the following hypothetical data set.

Example 6.1 Initiating events with loss of
heat sink.

In the last six years (during which the reactor was
critical for 42800 hr.) a hypothetical PWR has had
one initiating event that involved a loss of heat
sink.  The parameter to estimate is 8, the
frequency of such events while the reactor is
critical.

6.2.1 Frequentist or Classical Estimation

As explained in Section 6.1, Bayesian estimation
methods are more important in PRA, but the classical
estimator has a simpler form.  Also, the comparison
among estimators flows somewhat better if the short
presentation of frequentist estimators precedes the
lengthier presentation of Bayesian estimators.  For these
reasons, frequentist methods are given first in this
section.

6.2.1.1 Point Estimate

The most commonly used frequentist estimate is the
maximum likelihood estimate (MLE).  It is found by
taking the likelihood, given by Equation 6.1, and
treating it as a function of 8.  The value of 8 that
maximizes the likelihood is called the MLE.  It can be
shown (as a calculus exercise) that the maximum
likelihood estimate (MLE) of 8 is

 . (6.2)$ /λ = x t

This formula is simple and intuitively natural:  the
observed number of events divided by the observed
time period.  This simplicity is part of the appeal of the
MLE.  The hat notation is used to indicate that the MLE
is an estimate calculated from the data, not the true,
unknown 8.

Example 6.1 has x = 1 and t = 42800 hrs.  The
likelihood is plotted on Figure 6.3 as a function of 8.

The likelihood function is maximized when 8 =
1/42800 = 2.3E-5.  Therefore, the estimated event
rate for the plant is

= 1/42800 = 2.3E!5 events per critical-hour .$λ

Converting the hours to 42800/8760 = 4.89 critical-
years yields

= 1/4.89 = 0.20 events per critical-year.$λ

In the above example, and in general throughout this
handbook, the final answer is presented with few
significant digits.  This reflects the uncertainty inherent
in all estimates.  Indeed, sometimes not even the first
significant digit is known precisely.  During
intermediate calculations, however, more significant
digits will be shown, and used.  This prevents roundoff
errors from accumulating during the calculations.

It is also possible to combine, or pool, data from
several independent processes, each having the same
rate 8.  In particular, suppose that the ith Poisson
process is observed for time ti, yielding the observed
count xi.  The total number of event occurrences is x =
Gixi, where the sum is taken over all of the processes,
and the exposure time is t = Giti.  The rate 8 is estimated
by

.  $ / /λ = =x t x ti i i iΣ Σ

For example, if counts obtained for different years are
used to estimate the rate, the estimate is the ratio of the
total count to the total exposure time during these years.

6.2.1.2 Standard Deviation of the Estimator

The event count is random.  In other words, if an
identical plant could be observed during the same years,
a different number of events might occur due to
randomness.  Similarly, the same plant might yield a
different count over a different six-year period.
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Because the event count is random, the estimator is also
random, and the estimate is simply the observed value
for this plant during these years.  Note the distinction in
the terms: an estimator is a random variable, and an
estimate is the particular value of the estimator after the
data have been generated.

For a Poisson distributed random variable X, the mean
and variance are the same, E(X) = var(X) = 8t, as stated
in Appendix A.6.2.  Consequently, the standard
deviation of X is (8t)½, and the estimated standard

deviation of the estimator / X/t is$λ

.( $ ) / ( $ / ) // / /λ λt t t x t1 2 1 2 1 2= =

The estimated standard deviation of is also called the$λ
standard error for 8.

Thus, the standard error for 8 in Example 6.1 is
1/4.89 = 0.20 events per reactor-year.

A standard error is sometimes used for quick approxi-
mations when the data set is large.  In that case, the
MLE is approximately normal, and an approximate
95% confidence interval is given by MLE ±
2×(standard error).  This approximation holds for
maximum likelihood estimation of virtually any
parameter, when the date set is large.  For event
frequencies, however, the following exact confidence
interval can be found.

6.2.1.3 Confidence Interval for 8

Frequentist estimation is presented before Bayesian
estimation because the MLE is so simple, simpler in
form than the Bayes estimates.  The same cannot be
said for confidence intervals; the confidence-interval
formulas are somewhat more complicated than the
formulas for Bayesian interval estimates, and the
interpretation of confidence intervals is more subtle.
Confidence intervals are used in two ways in this
handbook: they give a standard of comparison, when
Bayes credible intervals are found based on so-called
noninformative priors, and they can be used (but are not
required) in some plots for validating model
assumptions.  Therefore, readers may wish to skim the
present section quickly on the first reading.

The confidence interval is given in many reference
books, such as Johnson, Kotz, and Kemp (1992, Sec.
7.3), Bain and Engelhardt (1992, Section 11.4), or
Martz and Waller (1991, Table 4.4).  It is based on the
chi-squared (or in symbols, P2) distribution, which is

tabulated in Appendix C, and which can be found easily
by many software packages.  As used below, P2

p(d)  is
the pth quantile, or (100p)th percentile, of the chi-
squared distribution with d degrees of freedom.  Do not
misread P2

p(d) as involving multiplication.

For a (1 ! ") confidence interval, or equivalently a
100(1 ! ")% confidence interval, the lower limit is

λ
χ

α
α

conf, /2 = / ( )2
2 2

2

x

t

If x = 0, this formula is undefined, but then simply set
8conf, "/2 = 0.

Similarly, the upper limit is

.λ
χ

α
α

conf, 1−
−=

+
/

/ ( )
2

1 2
2 2 2

2

x

t

Notice that an upper confidence limit is defined in the
case x = 0.  It is reasonable that observing no
occurrences of the event would provide some
information about how large 8 might be, but not about
how small it might be.

The above formulas are in terms of ".  Setting " = 0.1,
for example, gives the formulas for a 90% confidence
interval.  These formulas involves the 5th percentile of
a chi-squared distribution with 2x degrees of freedom,
and the 95th percentile of a chi-squared distribution
with (2x+2) degrees of freedom.

The resulting confidence interval is conservative in the
sense that the actual confidence level is no smaller than
the nominal level of 100(1 ! ")%, but it could be
larger.  This conservatism is inherent in confidence
intervals based on discrete data.

In Example 6.1, Table C.2 shows that 90%
confidence limits are

λ
χ

conf, 0.05 =
×

= =0 05
2 2

2 4.89

0103

9.78
0 010

. ( ) .
.

λ
χ

conf, 0.95 =
×

= =0 95
2 4

2 4.89

9.488

9.78
0 97

. ( )
.

with units events per critical-year.
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Figure 6.4  Confidence intervals from random data, all
generated from the same process.

The interpretation of confidence intervals is given in
Appendix B.  This interpretation deserves emphasis, so
we elaborate on the topic here.  In the  frequentist
approach, 8 is fixed and the data are random.
Therefore, the maximum likelihood estimator and the
confidence limits are all random.  For most data sets the

MLE, , will be close to the true value of 8, and the$λ
confidence interval will contain 8.  Sometimes,
however, the MLE will be rather far from 8, and
sometimes (less than 10% of the time) the 90% confi-
dence interval will not contain 8.  The procedure is
good in the sense that most of the time it gives good
answers, but the analyst never knows if the current data
set is one of the unlucky ones.

To illustrate this, consider the following example with
many hypothetical data sets from the same process.

Example 6.2 Confidence intervals from 
computer-generated data.

A computer was used to generate Poisson data,
assuming an event rate 8 = 1.2 events per year
and assuming that 6 years were observed.  Thus,
the event count followed a Poisson distribution
with mean 8t = 7.2.  This was repeated, and 40
event counts were generated in all.  These may
be interpreted as counts from 40 identical plants,
each observed for 6 years, or from 40 possible
six-year periods at the same plant.

Figure 6.4 shows that the first randomly generated
event count was 10, the next was 5, the next was
again 10, and so on.  Some of the event counts were
less than the long-term mean of 7.2, and some were
greater.  The maximum likelihood estimates of 8 are
plotted as dots in Figure 6.4.  The corresponding
90% confidence intervals for 8 are also plotted.

In Figure 6.4, the vertical dashed line shows the true
value of 8, 1.2.  Two of the 40 intervals (5%) are to
the right of the true 8.  These resulted from observing
event counts of 14 and 16.  One of the 40 intervals
(2.5%) is to the left of the true 8.  This interval was
computed from an observed event count of two.

Ideally, the error rates should both be 5%.  They are
not, for two reasons.  First, 40 is not a very large
number, so the random data do not exactly follow the
long-run averages.  Second, confidence intervals
with discrete data are inherently conservative: a 90%
confidence interval is defined so that the probability
of containing the true 8 is at least 90%, and the error
probabilities at each end are each at most 5%.

The data analyst will normally have data from just
one plant for the six-year period.  The resulting confi-
dence interval will contain the true value of 8, unless
the data happen to deviate greatly from the mean.
Unfortunately, the analyst does not know when this
has happened, only that it does not happen often.

6.2.2 Bayesian Estimation

6.2.2.1 Overview

Bayesian estimation of 8 involves several steps.  The
prior belief about 8 is quantified by a probability distri-
bution, the prior distribution.  This distribution will be
restricted to the positive real line, because 8 must be
positive, and it will assign the most probability to the
values of 8 that are deemed most plausible.  The data
are then collected, and the likelihood function  is
constructed.  This is given by Equation 6.1 for initiating
events.  It is the probability of the observed data,
written as a function of 8.  Finally, the posterior
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Figure 6.5  Prior distribution and posterior distributions
corresponding to three hypothetical data sets.

distribution is constructed, by combining the prior
distribution and the likelihood function through Bayes’
theorem.  (For background on Bayes’ theorem and
Bayesian estimation, see Appendix A.5 and B.5.1.)
This theorem says that

fpost(8) % likelihood(8) × fprior(8) .

Here, the symbol % denotes “is proportional to.”  The
posterior distribution shows the updated belief about
the values of 8.  It is a modification of the prior belief
that accounts for the observed data. 

Figure 6.5, adapted from a tutorial article by Siu and
Kelly (1998), shows how the posterior distribution
changes as the data set changes.  The figure is based on
a diffuse prior, and on three hypothetical data sets, with
x = 1 event in t = 10,000 hours, x = 10 events in t =
100,000 hours, and x = 50 events in t = 500,000 hours,

respectively.  Note, each of these data sets has  =  x/t$λ
= 1.E!4 events per hour.  The figure shows the prior
distribution, and the three posterior distributions
corresponding to the three data sets.

For a small data set, the posterior distribution resembles
the prior to some extent.  As the data set becomes
larger, several patterns are evident:

• the posterior distribution departs more and more
from the prior distribution, because the data
contribute the dominant information,

• the posterior distribution becomes more
concentrated, indicating better knowledge of the
parameter, less uncertainty, and 

• the posterior distribution becomes approximately

centered around the MLE, .$λ

To be consistent with the notation for random variables,
upper case letters would be used for uncertain
parameters that have probability distributions.  Such
notation is not customary in the Bayesian literature, and
will not be used here.  The reader must judge from
context whether the letter 8 denotes a particular value,
or the uncertain parameter with an associated
distribution.

6.2.2.2 Choosing a Prior

The subsections below consider estimation of 8 using
various possible prior distributions.  The simplest prior
distribution is discrete.  The posterior can be calculated
easily, for example, by a spreadsheet.  The next
simplest prior is called conjugate; this prior combines
neatly with the likelihood to give a posterior that can be
evaluated by simple formulas.  Finally, the most general
priors are considered; the posterior distribution in such
a case can only be found by numerical integration or by
random sampling.

The prior distribution should accurately reflect prior
knowledge or belief about the unknown parameter.
However, quantifying belief is not easy.  Raiffa and
Schlaifer (1961, Sections 3.3.3-3.3.5) point out that
most people can think more easily in terms of
percentiles of a distribution than in terms of moments.
They also give advice on looking at the situation from
many directions, to make sure that the prior belief is
internally consistent and has been accurately quantified.
Siu and Kelly (1998, Sec. 5.1.4) present seven warnings
in connection with developing a prior distribution,
which are summarized here:

• Beware of zero values.  If the prior says that a
value of 8 is impossible, no amount of data can
overcome this.

• Beware of cognitive biases, caused by the way
people tend to think.

• Beware of generating overly narrow prior distri-
butions.

• Ensure that the evidence used to generate the prior
distribution is relevant to the estimation problem.

• Be careful when assessing parameters that are not
directly observable.

• Beware of conservatism.  Realism is the ideal, not
conservatism.

• Be careful when using discrete probability distri-
butions.

For a fuller discussion of these points, see Siu and
Kelly.
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Some priors are chosen to be “noninformative,” that is,
diffuse enough that they correspond to very little prior
information.  The Jeffreys noninformative prior  is
often used in this way.  If information is available, it is
more realistic to build that information into the prior,
but sometimes the information is difficult to find and
not worth the trouble.  In such a case, the Jeffreys
noninformative prior can be used.  It is one of the priors
discussed below.

6.2.2.3 Estimation with a Discrete Prior

When the prior distribution is discrete, the calculations
can easily be performed in a spreadsheet.  Newcomers
to Bayesian estimation are strongly encouraged to work
through some examples of the type given here, to
develop a sense of how the process works and how the
posterior distribution depends on the prior and on the
data.

The parameter is assumed to take one of m possible
values, 81, ... , 8m.  Let the probability distribution
function (p.d.f.) be denoted by f, so f(8i) = Pr(8i).  This
probability quantifies the analyst’s prior belief that each
of the possible values is the one operating in nature.  

Then, some evidence is observed, denoted conceptually
by E.  Bayes’ theorem says that

(6.3)f E
f L E

L E f
i

i i

j jj

m( | )
( ) ( | )

( | ) ( )
λ

λ λ
λ λ

=
=∑ 1

where

f(8i | E) = the probability of 8i given evidence E
(posterior distribution),

f(8i) = the probability of 8i prior to having
evidence E ( prior distribution), and

L(E | 8i) = the likelihood function (probability of the
evidence given 8i) .

Note that the denominator in Equation 6.3, the total
probability of the evidence E, is simply a normalizing
constant.  Therefore, a more abbreviated form of Bayes’
theorem is

.f E f L Ei i i i( | ) ( ) ( | )λ λ λ∝

This is the form of the theorem that was given in the
overview of Section 6.2.2.1.

When the evidence is in the form of x failures generated
by a Poisson process over an operational time t, the
likelihood function is given by Equation 6.1:

 .L E e
t

xi
i it

x

( | )
( )

!
λ

λλ= −

The above equations are illustrated here with several
prior distributions.  For data, they all use the first
sample in Example  6.2, 10 events in six years.  They
all use simple, flat, prior distributions over a
moderately wide range, but with different degrees of
discreteness.  One could argue that this prior is not
very informative, but the real reason we choose it is
to make the impact of the Bayesian updating process
easy to see.

Given the ease of calculation with current computers,
a finely discretized prior (say, at 0, 0.01, 0.02,...6.00)
would give the most accurate results, and we will
provide that calculation in a moment.  First, however,
let us use a very coarse prior at 0, 0.5, 1.0, ...6.0.
With only 13 bins, the reader can perform hand
calculations quite easily.  The results are given in
Table 6.2.  The prior is discrete, and is shown in
Figure 6.6.  The posterior distribution is also discrete,
and is shown in Figure 6.7.

Table 6.2  Example 6.2, first sample (10 events
in 6 years) with coarse prior.

Event 
Rate

8i

Prior
Probability

pi

Likelihood
Li

pi x Li

Posterior
Probability

Pr(8i|E)

Cumulative
Probability
E Pr(8j|E)

0.0 0.077 0.00E+0 0.00E+0 0.00E+0 0.00E+0

0.5 0.077 8.10E-4 6.23E-5 2.43E-3 2.43E-3
1.0 0.077 4.13E-2 3.18E-3 1.24E-1 1.26E-1

1.5 0.077 1.19E-1 9.12E-3 3.56E-1 4.82E-1

2.0 0.077 1.05E-1 8.06E-3 3.14E-1 7.96E-1

2.5 0.077 4.86E-2 3.74E-3 1.46E-1 9.42E-1

3.0 0.077 1.50E-2 1.15E-3 4.49E-2 9.87E-1

3.5 0.077 3.49E-3 2.68E-4 1.05E-2 9.98E-1

4.0 0.077 6.60E-4 5.07E-5 1.98E-3 1.00E+0

4.5 0.077 1.07E-4 8.20E-6 3.20E-4 1.00E+0

5.0 0.077 1.52E-5 1.17E-6 4.57E-5 1.00E+0

5.5 0.077 1.97E-6 1.51E-7 5.90E-6 1.00E+0

6.0 0.077 2.34E-7 1.80E-8 7.01E-7 1.00E+0

There is some value in plotting both distributions in
the same graph, so they can be compared easily. 
In such a plot, the vertical bars fall on top of each
other and are easily confused.  Therefore, we draw
the graph by connecting the tops of the bars, in
Figure 6.8.
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Figure 6.6  Coarse discrete prior distribution for 8.
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Figure 6.7  Discrete posterior distribution of 8 based
on 10 events in 6 years.
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Figure 6.8  Discrete prior and posterior distributions
plotted together.
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Figure 6.9  Discrete prior and posterior distributions
for 10 events in 6 years, with finely discretized prior.
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Figure 6.10  Discrete prior and posterior distributions
for 10 events in six years, with very finely discretized
prior.

The natural tendency is to think of these curves as
densities, but this is not quite correct because they
are not normalized to integrate to 1.0.  Except for that
detail, the curves can be thought of as continuous
approximations of the discrete distribution. 

Even with such a coarse prior, the evidence is strong
and forces the distribution to peak at about 8 = 1.5
per year.  There is essentially no chance that 8 is
greater than four or less than 0.5.

If we repeat the calculation with a discrete prior twice
as fine (i.e., on the points 0, 0.25, 0.50, 0.75,...6.00),
the prior now has 25 bins and the results are much
more smooth, as shown in Figure 6.9.  These results
are quite smooth, and of course follow the previous
results.

Finally, let us repeat the calculation for a discrete flat
prior on the points 0, 0.05, 0.10, 0.15,...6.00, i.e., a
121-point grid.  This time, the results, shown in
Figure 6.10, are detailed enough to closely
approximate a smooth, continuous distribution.
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The spreadsheet calculation is identical with Table
6.2, except for having 121 bins rather than 13.  Some
values are summarized in Table 6.3.  These
Bayesian results are also compared with the
frequentist estimates obtained from the first sample,
shown earlier in Figure 6.4.  The Bayesian posterior
distribution has a mode where the probability
function is maximized, and a mean equal to E8i f(8i).

Table 6.3. Comparison of Bayesian and
frequentist estimates for the data in
Example 6.2.  

Quantity Bayes,
flat prior

Frequentist,
Figure 6.4

Point estimate
(Bayes mode,
 Bayes mean, 
 frequentist MLE)

1.65
1.833

1.73

Lower end of interval
(Bayes 5th percentile,
 lower confidence limit)

1.00 0.95

Upper end of interval
(Bayes 95th percentile,
 upper confidence limit)

2.80 2.85

These values are compared to the frequentist point
estimate, the MLE.  The Bayesian 5th and 95th per-
centiles form a Bayes credible interval, which is
compared with the frequentist confidence limits
shown at the top of Figure 6.4.  The Bayes 90%
interval, based on a flat, essentially noninformative
prior,  is slightly more narrow than the frequentist
90% confidence interval.

This concludes the examples for this section.  However,
we suggest that the reader make up a data set for
examining the way the posterior distribution responds
to growing evidence.  For example, try beginning with
zero failures in year one; then adding two failures in
year two; then zero failures in year three; etc.  Also try
a case that does not agree with the prior; for example
five failures in year one; then seven more in year two;
then six in year three.  Such examples are given for p in
Section 6.3.2.1, but they are most valuable to someone
who constructs them and works them out, instead of
merely reading about them.

6.2.2.4 Estimation with a Conjugate Prior

We now turn from discrete to continuous prior
distributions.  We begin with a very convenient family
of distributions:  the conjugate priors.

6.2.2.4.1 Definitions

The conjugate family of prior distributions for Poisson
data is the family of gamma distributions.  Two param-
eterizations of gamma distributions are given in Ap-
pendix A.7.6.  For Bayesian estimation, the following
parameterization is the more convenient one:

 . (6.4)f e( )
( )

λ
β

α λ
α

α λβ= − −

Γ
1

Here, 8 has units 1/time and $ has units of time, so the
product 8$ is unitless.  For example, if 8 is the
frequency of events per critical-year, $ has units of
critical-years.  The parameter $ is a kind of scale
parameter.  That is, $ corresponds to the scale of 8.  If
we convert 8 from events per hour to events per year by
multiplying it by 8760, we correspondingly divide $ by
8760, converting it from hours to years.  The other
parameter, ", is unitless, and is called the shape
parameter.  The gamma function, '("), is a standard
mathematical function, defined in Appendix A.7.6.  If
" is a positive integer, '(") equals ("!1)!

Let 8 have a gamma uncertainty distribution.  In the
present parameterization, the mean of the gamma
distribution, also written as the expected value E(8), is
"/$, and the variance, var(8), is "/$ 2.  Note that the
units are correct, units 1/time for the mean and 1/time2

for the variance.

6.2.2.4.2 Update Formulas

As stated earlier and  in Appendix B.5.1, the posterior
distribution is related to the prior distribution by

(6.5)f X x fpost prior ( ) Pr( | ) ( )λ λ λ∝ =

This is the continuous analogue of Equation 6.3.  The
probability of the data is also called the likelihood, in
which case it is considered as a function of the parame-
ter 8 for a given x.  For Poisson data, it is given by
Equation 6.1.  The symbol % denotes “is proportional
to.”  Probability density functions generally have
normalizing constants in front to make them integrate to
1.0.  These constants can be complicated, but using
proportionality instead of equality allows us to neglect
the normalizing constants.  Stripped of all the normal-
izing constants, the gamma p.d.f. is 

.f e( )λ λα λβ∝ − −1
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The gamma distribution and the Poisson likelihood
combine in a beautifully convenient way:

f e
t

x
e

e

t
x

x t

post ( )
( )

!
( ) ( )

λ
λ

λ

λ

λ α λβ

α λ β

∝

∝

− − −

+ − − +

1

1

In the final expression, everything that does not involve
8 has been absorbed into the proportionality constant.
This result is “beautifully convenient,” because the
posterior distribution of 8 is again a gamma distribu-
tion.  This is the meaning of conjugate: if the prior
distribution is a member of the family (in this case, the
gamma family), the posterior distribution is a member
of the same family.  The update formulas are:

"post = x + "prior

$post = t + $prior

This leads to an intuitive interpretation of the prior
parameters:  a gamma("prior, $prior) distribution is equiv-
alent, at least intuitively, to having seen "prior events in
$prior time units, prior to taking the current data.

Figure 6.5 was constructed in this way.  The prior
distribution was gamma(0.2, 10,000).  Therefore, the
posterior distributions were gamma(1.2, 20,000),
gamma(10.2, 110,000), and gamma(50.2, 510,000).

When using these update formulas, be sure that t and
$prior have the same units.  If one is expressed in hours
and one in years, one of the two numbers must be
converted before the two are added.

The moments of the gamma distribution were men-
tioned previously.  The posterior  mean is "post/$post and
the posterior variance is "post/($post)

2.

The percentiles of the gamma distribution are given by
many software packages.  If you use such software, be
careful to check that it is using the same parameteriza-
tion that is used here!  Here are three ways to get the
correct answer.  (1) If the software uses the other
parameterization, fool it by inverting your value of $.
Then check to make sure that the numbers appear
reasonable.  (2) A safe method is to have the software
find the percentiles of the gamma("post, 1) distribution.
Then manually divide these percentiles by $post. This
ensures that the scale parameter is treated correctly.  (3)
As a final alternative, the percentiles of the gamma
distribution can be found from a tabulation of the chi-
squared distribution, possibly interpolating the table.
To do this, denote the (100p)th percentile of the poste-

rior distribution by 8p.  For example, denote the 95th
percentile by 80.95. The (100p)th percentile is given by:

8p = P2
p(2"post)/(2$post)

where, as elsewhere, P2
p(d) is the pth quantile, or

(100p)th percentile, of a chi-squared distribution with
d degrees of freedom.  Note the presence of 2 in the
numerator and denominator when the chi-squared
distribution is used.

The next section contains examples that use these
update formulas with several priors.

6.2.2.5 Possible Conjugate Priors

6.2.2.5.1 Informative Priors

The prior distribution must come from sources other
than the current data.  It might be tempting to use the
data when constructing the prior distribution, but that
temptation must be resisted.  Prior distributions are
named “prior” for a reason:  they reflect information
that does not come from the current data.  Ideally,
generic data provide the basis for prior belief.  Generic
data sources are given in Section 4.2.

Consider again Example 6.1, involving initiating
events with loss of heat sink.  With no special knowl-
edge about the plant, prior belief about the plant is
reasonably based on the overall industry perfor-
mance, so we use the generic industry distribution as
the prior.  Poloski et al. (1999a) examined initiating-
event data from the nuclear power industry over nine
years.  For PWRs, and initiating events involving loss
of heat sink, they determined that the variability of 8
across the industry can be described by a gamma
distribution with shape parameter = 1.53, and scale
parameter = 10.63 reactor-critical-years.  Regretta-
bly, Table G-1 of the report gives only a mean and a
90% interval, not the distribution and its parameters.
The distribution given here is taken from the unpub-
lished work that formed the basis of the report.  The
distribution is a gamma distribution, so the update
formulas given above can be used in the hypothetical
example of this section.  The prior distribution is
shown in Figure 6.11.

Now, consider updating this prior with the data from
Example 6.1.  To make the units consistent, convert
the 42800 reactor-critical-hours in the example to
42800/8760 = 4.89 reactor-critical-years.  The update
formula yields:

"post = x + "prior = 1 + 1.53 = 2.53

$post = t + $prior = 4.89 + 10.63 = 15.52 reactor-critical-
years.
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Figure 6.11  Prior density for 8, gamma(1.53, 10.63).

Figure 6.13  Posterior cumulative distribution of 8
for Example 6.1 with industry prior.  The 5th and
95th percentiles are shown.
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Figure 6.12  Posterior density of 8, gamma(2.53,
15.52), for Example 6.1 with industry prior.  The 5th
and 95th percentiles are shown.

The mean, "post/$post, is 0.163 events per reactor-
critical-year,  the variance is 0.0105 (per reactor-
critical-year squared), and the standard deviation is
the square root of the variance, 0.102 per reactor-
critical-year.

A 90% credible interval is the interval from the 5th to
the 95th percentiles of the posterior distribution.  A
software package finds the two percentiles of a
gamma(2.53, 1.0) distribution to be 0.5867 and
5.5817.  Division by $post yields the two percentiles of
the posterior distribution: 0.038 and 0.36.  Alterna-
tively, one may interpolate Table C.2 of Appendix C
to find the percentiles of a chi-squared distribution
with 5.06 degrees of freedom, and divide these
percentiles by 2$post. Linear interpolation gives
answers that agree to three significant digits with the
exact answers, but if the degrees of freedom had not
been so close to an integer, the linear interpolation
might have introduced a small inaccuracy.

The interpretation of the above numbers is the
following.  The best belief is that 8 is around 0.16,
although it could easily be somewhat larger or
smaller.  Values as small as 0.038 or as large as
0.36 are possible, but are approaching the limits of
credibility.

Two graphical ways of presenting this information
are given below.  Figure 6.12 shows the posterior
density.  The areas to the left of the 5th percentile
and to the right of the 95th percentile are shaded.
The 90% credible interval is the interval in the mid-
dle, with probability 90%.  Figure 6.13 shows the
same information using the cumulative distribution.
The 5th and 95th percentiles are the values of 8
where the cumulative distribution is 0.05 and 0.95,
respectively.  These percentiles are the same values,
as shown in the plot of the density.

For PRA applications, however, the right tail is
typically of concern for risk, corresponding to high
initiating event frequency (or, in other sections of this
chapter, high probability of failure on demand, high
unavailability, or long time to recovery).  The interval
given above holds the error probability for the right
tail equal to 0.05.  This number is customary in much
statistical practice, and has therefore been used in
many studies for the NRC.  The lower end of the
interval, on the other hand, is not of great safety
concern.  It is easy to calculate, however.  Therefore,
the above 90% interval, corresponding to 5% poste-
rior probability in each tail, is commonly presented in
PRA studies.

Actually, however, the interval presents only a
portion of the information in the posterior distribution,
two summary numbers.  The full distribution is used
in a PRA.
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Figure 6.14  Jeffreys noninformative prior distribution
for an event frequency.

6.2.2.5.2 Noninformative Prior

The Jeffreys noninformative prior is intended to
convey little prior belief or information, thus allowing
the data to speak for themselves.  This is useful when
no informed consensus exists about the true value of the
unknown parameter.  It is also useful when the prior
distribution may be challenged by people with various
agendas.  Some authors use the term reference prior
instead of “noninformative prior,” suggesting that the
prior is a standard default, a prior that allows consis-
tency and comparability from one study to another.

With Poisson data, the Jeffreys noninformative prior  is
obtained if the shape parameter of a gamma distribution
is taken to be " = ½ and the parameter $ is taken to be
zero.  (See, for example, Box and Tiao 1973.)  Ignoring
the normalizing constant at the front of Equation 6.4
yields a function that is proportional to 8!½, shown in
Figure 6.14.  Although this function is interpreted as a
density function, it is an improper distribution be-
cause its integral from 0 to 4 is infinite.

It is not intuitive that this prior is “noninformative.”
Simple intuition might expect a uniform distribution
instead.  To better educate the intuition, suppose we had
some median prior value m; that is, the prior distribu-
tion of 8 satisfies Pr(8 < m) = Pr(8 > m).  This can be
rewritten as

Pr(0 < 8 < m) = Pr(m < 8 < 4) .

The interval from 0 to m is shorter than the interval
from m to 4.  Therefore, the prior density should be
larger to the left of m than to the right.  The density
shown in Figure 6.14 has this property.  (We ignore the
fact that the density in Figure 6.14 is improper.)

Further arguments for the prior are too complicated to
give here.  For a fuller explanation of noninformative
priors, see Appendix B.5.3.1 and the references cited
there.

Suppose that the data consist of x events in time t.
Formal application of the update formulas yields

"post = x + ½
$post = t + 0 .

That is, the Bayes posterior distribution for  8 is
gamma(x + ½, t).

It is interesting to compare the interval using the
Jeffreys prior with the corresponding confidence
interval.  The 90% posterior credible interval is

80.05 = P2
0.05(2x + 1)/2t

80.95 = P2
0.95(2x + 1)/2t.

These may be compared with the 90% confidence
interval:

8conf, 0.05 = P2
0.05(2x)/2t

8conf, 0.95 = P2
0.95(2x + 2)/2t.

The confidence intervals differ from the Bayes credible
intervals only in the degrees of freedom, and there only
slightly.  This is the primary sense in which the Jeffreys
prior is “noninformative.”  The lower and upper confi-
dence limits have degrees of freedom 2x and 2x + 2,
respectively.  The two Bayesian limits each use the
average, 2x + 1.  The confidence interval is wider than
the Jeffreys credible interval, a reflection of the conser-
vatism of confidence limits with discrete data.  How-
ever the similarity between the confidence limits and
the Jeffreys limits shows that the result using the
Jeffreys prior will resemble the result using frequentist
methods, that is, using no prior information at all.

Consider again Example 6.1, with one event in 4.89
critical-years, and use the Jeffreys noninformative
prior.  The resulting posterior distribution has

"post = 1.5
$post = 4.89 critical-years .

The mean of this distribution is 1.5/4.89 = 0.31
events per critical-year.  A 90% Bayes credible
interval can be obtained from a chi-squared table
without any need for interpolation, because the
degrees of freedom parameter is 3, an integer.  The
5th and 95th percentiles of the chi-squared distribu-
tion are 0.352 and 7.815.  Division by 2×4.89 yields
the percentiles of the posterior distribution, 0.036 and
0.80.
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This posterior distribution has a larger mean and
larger percentiles than the posterior distribution in
Section 6.2.2.5.1.  The data set is the same, but the
different prior distribution results in a different poste-
rior distribution.  The results will be compared in
Section 6.2.2.5.4.

6.2.2.5.3 Constrained Noninformative Prior

This prior is a compromise between an informative
prior and the Jeffreys noninformative prior.  The mean
of the constrained noninformative prior uses prior
belief, but the dispersion is defined to correspond to
little information.  These priors are described by
Atwood (1996), and by references given there.  Con-
strained noninformative priors have not been widely
used, but they are mentioned here for the sake of
completeness.

For Poisson data, the constrained noninformative prior
is a gamma distribution, with the mean given by prior
belief and the shape parameter = ½.  That is:

"prior = ½
$prior satisfies "prior/$prior = prior mean .

To illustrate the computations, consider again the
Example 6.1, with one event in 4.89 reactor-critical-
years.  Suppose we knew that in the industry overall
such events occur with an average frequency of
0.144 events per reactor-critical-year.  (This is
consistent with the informative prior given above in
Section 6.2.2.5.1.)  Suppose further that we were
unable or unwilling to make any statement about the
dispersion around this mean —  the full information
used to construct the informative prior was not

available, or the plant under consideration was
atypical in some way, so that a more diffuse prior
was appropriate.

The constrained noninformative prior with mean
0.144 has "prior = ½ and $prior = 3.47 critical-years.
The resulting posterior distribution has

"post = x + ½ = 1.5
$post = t + 3.47 = 8.36

The mean is 0.18 events per critical-year, and the
90% credible interval is (0.021, 0.47).  This notation
means the interval from 0.021 to 0.47.

6.2.2.5.4 Example Comparisons Using Above 
Priors

In general, the following statements can be made:

• The Jeffreys noninformative prior results in a
posterior credible interval that is numerically
similar to a confidence interval, but slightly
shorter.

• If the prior mean exists, the posterior mean is
between the prior mean and the MLE.

• If two prior distributions have the same mean, the
more concentrated (less diffuse) prior distribution
will yield the more concentrated posterior distribu-
tion, and will pull the posterior mean closer to the
prior mean.

These statements are now illustrated by example.
The  estimates found in the above sections for
Example 6.2 and the various priors are compared in
Table 6.4 and in Figure 6.15.

Table 6.4  Comparison of estimates with 1 event in 4.89 reactor-critical-years.

Method Prior mean Posterior
parameters

Point estimate
(MLE or posteri-
or mean)

90% interval (confidence
interval or posterior credi-
ble interval)

Frequentist NA NA 0.20 (0.010, 0.97)

Bayes with Jeffreys
noninformative prior,
gamma(0.5, 0)

undefined " = 1.5
$ = 4.89

0.31 (0.036, 0.80)

Bayes with (informative)
industry prior,
gamma(1.53, 10.63)

0.144 " = 2.53
$ = 15.52

0.16 (0.038, 0.36)

Bayes with constrained
noninformative prior,
gamma(0.5, 3.47)

0.144 " = 1.5
$ = 8.36

0.18 (0.021, 0.47)
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Figure 6.15  Comparison of four point estimates and
interval estimates for 8.

In Table 6.4 and in Figure 6.15, the Jeffreys prior and
the frequentist approach are listed next to each other
because they give numerically similar results.  The
Jeffreys prior yields a posterior credible interval that
resembles the frequentist confidence interval.  It is a
little shorter, but it is neither to the right nor to the
left.  This agrees with the earlier discussion of the
Jeffreys prior.

In each Bayesian case, the posterior mean falls
between the prior mean (if defined) and the MLE,
0.20.  The prior distribution has more influence when
the prior distribution is more tightly concentrated
around the mean.  The concentration is measured by
the shape parameter "prior, because 1/" equals the
relative variance (= variance/mean2).  Therefore the
larger ", the smaller the relative variance.  The
industry prior and the constrained noninformative
prior have the same mean, but the industry prior has
the larger ", that is, the smaller variance.  As a
consequence, in both cases the posterior mean is
between the MLE, 0.204, and the prior mean, 0.144,
but the posterior mean based on the industry prior is
closer to 0.144, because that prior has a smaller
variance.  Because the prior mean is smaller than the
MLE, the bottom two lines give smaller posterior
estimates than do the top two lines.  Also, the prior
distribution with the most information (largest ")
yields the most concentrated posterior distribution,
and the shortest 90% interval.

In some situations, no conjugate prior is satisfactory.
For example, a gamma distribution is very unrealistic if
the shape parameter is very small.  As a rule of thumb,
the lower percentiles of the distribution are unrealistic
if " is much smaller than 0.5.  Such a posterior distribu-
tion arises with Poisson data when the prior distribution
is very skewed (" very small) and the data contain zero
events.  Then, the posterior distribution also is very
skewed, and the posterior 5th percentile may be many
orders of magnitude below the posterior mean.  The
subject-matter experts must look at the percentiles and
decide if they are believable.  If not, a more appropriate

prior should be chosen.  It will not be conjugate.  This
is the subject of the next subsection.  

6.2.2.6 Estimation with a Continuous 
Nonconjugate Prior

Discrete priors and conjugate priors were updated
above with simple formulas.  What remains are the
continuous nonconjugate priors.  Any continuous
distribution defined on the allowed range of 8 can, in
principle, be used as a prior.  The resulting posterior
distribution is a continuous distribution, with no simple
form.  (Because the posterior distribution does not have
a simple analytical form, it cannot be entered directly as
an input to most PRA codes.  Instead, a discrete ap-
proximation of the posterior distribution must usually
be used.)

Three approaches for obtaining the posterior are given
here.  Some examples will be worked out in Section
6.2.2.7.

6.2.2.6.1 Direct Numerical Integration

If software is available for performing numerical
integration, the following approach can be used.  Find
the form of the posterior distribution, using Equation
6.5.  Suppose, for example, that the prior distribution
for 8 is lognormal, with : and F2 denoting the mean and
variance of the normal distribution of ln8.  As stated in
Appendix A.7.3, the lognormal density is proportional
to
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Substitute this and Equation 6.1 into Equation 6.5, to
obtain the form of the posterior density:
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All terms that do not involve 8 have been absorbed into
the normalizing constant, C.  The normalizing constant
can be evaluated by numerically integrating Cfpost from
0 to 4, that is, integrate the right hand side of the
equation.  Unless x is unrealistically large, the function
does not need to be integrated in practice out beyond,
say, ln8 = : + 5F.  C equals the integral of Cfpost,
because the integral of fpost must equal 1.  Once C has
been evaluated, the mean and percentiles of fpost can be
found numerically.



Parameter Estimation and Model Validation

6-17

Numerical integration, using a technique such as the
trapezoidal rule or Simpson’s rule, can be programmed
easily, even in a spreadsheet.  The ideas are found in
some calculus texts, and in books on numerical methods
such as Press et al. (1992).

6.2.2.6.2 Simple Random Sampling

A second approach, which does not directly involve
numerical integration, is to generate a large random
sample from the posterior distribution, and use the
sample to approximate the properties of the distribution.
Some people think of this as numerical integration via
random sampling.  Surprisingly, the random sample can
be generated without explicitly finding the form of the
posterior distribution, as explained by Smith and
Gelfand (1992).

The algorithm, called the rejection method for sam-
pling from a distribution, is given here in its general
form, and applied immediately to sampling from the
posterior distribution.  In general, suppose that it is
possible to sample some parameter 2 from a continuous
distribution g, but that sampling from a different
distribution f is desired.  Suppose also that a positive
constant M can be found such that f(2)/g(2) # M for all
2.  The algorithm is:

(1) Generate 2 from g(2);
(2) Generate u from a uniform distribution, 0 # u # 1;

and
(3) If u # f(2)/[Mg(2)] accept 2 in the sample.  Other-

wise discard it.

Repeat Steps (1) through (3) until enough values of 2
have been accepted to form a sample of the desired
size.

This algorithm is the basis for many random-number
generation routines in software packages.  It is applied
below to the generation of a sample from the posterior
distribution for 8.  The equations are worked out here,
and the algorithm for the posterior distribution is
restated at the end.

Let f be the posterior density and let g be the prior
density.  Then Equation 6.5 states that the ratio
f(8)/g(8) is proportional to the likelihood, which is
maximized, by definition, when 8 equals the maximum
likelihood estimate, x/t.  That is, the ratio of interest is:

f(8)/g(8) = Ce!8t(8t)x 

for some constant C.  This is maximized when 8 equals
x/t.  Therefore, define M = max[f(8)/g(8)] = Ce!xxx.
The condition in Step (3) above is equivalent to:

u # [Ce!8t(8t)x] / [Ce!xxx ] = [e!8t(8t)x] / [e!xxx ] .

The constant cancels in the numerator and denominator,
so we do not need to evaluate it!  It would have been
possible to work with m = M/C, and the calculations
would have been simpler.  This rewritten form of the
algorithm, for Poisson data, is given here.

If x > 0, define m = e!xxx.  If x = 0, define m = 1.

The steps of the algorithm are:

(1) Generate a random 8 from the prior distribution;
(2) Generate u from a uniform distribution, 0 # u # 1;

and
(3) If u # e!8t(8t)x/m, accept 8 in the sample.  Other-

wise discard 8.

Repeat Steps (1) through (3) until a sample of the
desired size is found.

Intuitively, this algorithm generates possible values of
8 from the prior distribution, and discards most of those
that are not very consistent with the data.  The result is
a sample from the posterior distribution.

6.2.2.6.3   More Complicated Random Sampling

All-purpose Bayesian update programs can be used for
the present simple problem.  For example, the program
BUGS1 (Bayesian inference Using Gibbs Sampling)
performs Markov chain Monte Carlo (MCMC)
sampling.  This package is intended for complicated
settings, such as those described in Chapters 7 and 8.
Using it here is like using the proverbial cannon to kill
a mosquito.  Nevertheless, the program is free, and very
flexible, and can be used here.  It is available for
download at

http://www.mrc-bsu.cam.ac.uk/bugs/  

and is described more fully in Sections 7.2.3 and
8.3.3.3 of this handbook.  An example is given below.

1  Mention of specific products and/or manufacturers in
this document implies neither endorsement or
preference, nor disapproval by the U.S. Government or
any of its agencies of the use of a specific product for
any purpose.
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model
{
  mu <- lambda*rxyrs
  x ~ dpois(mu)
  lambda ~ dlnorm(-6.908, 0.5104)
}
list(rxyrs=2102, x=0)

Figure 6.16  Script for analyzing Example 6.3 using
BUGS.

6.2.2.7 Examples Involving Nonconjugate Priors

These techniques will be illustrated with Example 6.3,
from Appendix J-4 of Poloski et al. (1999a).

Example 6.3 Small-break LOCAs.

No small-break loss-of-coolant accidents
(SBLOCAs) have occurred in 2102 reactor-
calendar-years at U.S. nuclear power plants.  The
WASH-1400 (NRC 1975) distribution for the
frequency of this event was lognormal with
median 1E!3 and error factor 10.

6.2.2.7.1   Example with Lognormal Prior

Poloski et al. (1999a) use the WASH-1400 distribu-
tion as a prior, and update it with the 2102 years of
data.

The resulting posterior distribution was sampled
100,000 times using the method described in Section
6.2.2.6.2 above, and the mean was found.  Then, the
values were arranged in increasing order, and the
percentiles of the sample were found.  This process
took less than 15 seconds in 1999 on a 166 MHz
computer.  Based on the mean and percentiles of the
sample, the mean of the posterior distribution is
3.5E!4, and the 90% posterior credible interval is
(4.5E!5, 9.8E!4).

To illustrate the method of Section 6.2.2.6.3, the
distribution was also sampled using BUGS.  Figure
6.16 shows the script used for running BUGS.  

The section in curly brackets defines the model.
Note that <-, intended to look like a left-pointing
arrow, is used to define quantities in terms of other
quantities, and ~ is used to generate a random
quantity from a distribution.  The names of distribu-
tions begin with the letter d.  Thus, X is a Poisson
random variable with mean :, with :` = 8 × rxyrs.
The prior distribution of 8 is lognormal.  The parame-

ters given in the script arise as follows.  BUGS
parameterizes the normal in terms of the mean and
inverse of the variance, for reasons explained in
Section 6.6.1.2.1.  It parameterizes the lognormal
distribution using the parameters of the underlying
normal.  It is shown below that a lognormal with
median 1E!3 and error factor 10 corresponds to an
underlying normal with mean !6.980 and standard
deviation 1.3997.  Therefore, the inverse of the
variance is 1/1.39972 = 0.5104.

The line beginning “list” defines the data, 0 events is
2102 reactor years.  BUGS also requires an initial
value for 8, but generated it randomly.

When BUGS generated 100,000 samples, the mean,
5th percentile, and 95th percentile of 8 were 3.5E!4,
4.5E!5, and 9.8E!4, just as found above.

6.2.2.7.2 Example with “Moment-Matching” 
Conjugate Prior

Conjugate priors have appeal: Some people find
algebraic formulas tidier and more convenient than
brute-force computer calculations.  Also, when a
PRA program requests a distribution for a parameter,
it is usually easier to enter a distributional form and
a couple of parameters than to enter a simulated
distribution.

Therefore, a nonconjugate prior is sometimes re-
placed by a conjugate prior having the same mean
and variance.  This method is carried out here with
the above example.

Begin by finding the gamma prior with the same
moments as the above lognormal prior.  As explained
in Appendix A.7.3, the median, error factor, and
moments of the lognormal distribution are related to
: and F of the underlying normal distribution of ln7
as follows:

median(8) = exp(:)
EF(8) = exp(1.645F)
mean(8) = exp(: + F2/2)
var(8) = [median(8)]2@exp(F2)@[exp(F2) ! 1] .

The lognormal prior has median 1.0E!3, and error
factor 10.  Solving the first two equations yields

: = !6.907755
F = 1.399748 .

Substituting these values into the second two equa-
tions yields

mean(8) = 2.6635E!3
var(8) = 4.3235E!5  .
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Now the gamma distribution must be found with this
mean and this variance.  The formulas for the mo-
ments of a gamma distribution were given in Section
6.2.2.4.1 and in Appendix A.7.6:

mean = "/$
variance = "/$2 .

Therefore,

" = mean2/variance = 0.164
$ = mean/variance = 61.6 reactor-years.

Warning flags should go up, because " is consider-
ably smaller than 0.5.  Nevertheless, we carry out the
example using this gamma distribution as the prior.
The update formulas yield:

"post = 0 + 0.164 = 0.164
$post = 2102 + 61.6 = 2164 reactor-years .

The posterior mean is 7.6E!5, and a 90% credible
interval is (3.4E!12, 4.1E!4), all with units events
per reactor-year.

6.2.2.7.3 Comparison of Example Analyses

The two posterior distributions do not agree closely,
as will be discussed below.  If the shape parameter
" of the gamma prior had been larger, the two prior
distributions would have had more similar percen-
tiles, and the two posterior distributions likewise
would have agreed better.  As it is, however, the two
analyses are summarized in Table 6.5.

Table 6.5 Posterior distributions from two 
analyses.

Prior Mean 90% Interval

Lognormal 3.5E!4 (4.5E!5, 9.8E!4)

Gamma 7.6E!5 (3.4E!12, 4.1E!4)

The most notable difference between the two poste-
rior distributions is in the lower endpoints, the 5th
percentiles, which differ by many orders of magni-
tude.  This is explained, to some extent, by graphical
comparisons.  Figures 6.17 and 6.18 show the prior
cumulative distributions.  When plotted on an ordi-
nary scale in Figure 6.17, the two prior distributions
look fairly similar, although the gamma distribution
seems to put more probability near zero.  The differ-
ences become much more obvious when the two
prior distributions are plotted on a logarithmic scale
in Figure 6.18.  These differences between the two
prior distributions are present in spite of the fact that
the two priors have equal means and equal vari-
ances.

Figure 6.17  Two prior distributions having the same
means and variances.

Figure 6.18 The same prior distributions as in the
previous figure, with 8 plotted on a logarithmic scale.

The two resulting posterior distributions are also
quite different in the lower tail, as shown in Figure
6.19, and this difference is especially clear when the
distributions are plotted on a log scale, as shown in
Figure 6.20.

Figure 6.19  Two posterior distributions, from priors
in previous figures.
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Figure 6.20 The same posterior distributions as in
the previous figure, with 8 plotted on logarithmic
scale.

Incidentally, these illustrations use cumulative distri-
butions instead of densities, for an important reason.
Cumulative distributions simply show probabilities,
and so can be plotted with the horizontal scale either
linear or logarithmic.  Alternatively, the density of
ln(8) could be plotted against ln(8), but take care to
calculate the density of ln(8) correctly, as explained
in Appendix A.4.7.

6.2.2.8 Analysis with Fixed Count and Random
Time

Sometimes it is useful to consider a fixed number of
events in a random time, a waiting time.  For example,
if the event frequency is believed to change over time,
only the most recent history may represent current
behavior.  In such a situation, one might decide to use
only the most recent few events, such as x = 3, and to
treat the corresponding time t as random.  Here t is the
time measured backwards from the present to the xth
event in the past.  Earlier events could be used to
construct a prior distribution, but the dispersion of the
prior distribution should be set large because the earlier
events are not considered fully relevant to the present.

The above data consist of x exponential(8) durations.
The analysis techniques are given in Section 6.6.1.2.2.
It turns out that Bayesian analysis with an informative
prior is exactly the same whether the data are regarded
as coming from a Poisson count x in fixed time t or a
sum t of x exponential durations.  The two likelihoods
are proportional to each other, and the posterior distri-
butions are identical.

6.2.3 Model Validation

Model validation should go hand in hand with parame-
ter estimation.  Philosophically, it would seem natural
first to confirm the form of the model, and second to
estimate the parameters of that model.  However,
typically one can perform goodness-of-fit tests, and

other validations of a model, only after the model has
been fully specified, that is, only after the form of the
model has been assumed and the corresponding param-
eters have been estimated.  Because parameter-estima-
tion is built into most model-validation procedures, it
was presented first.

It is usually wise not to stop the analysis with just
estimating the parameters.  Foolish results have been
presented by analysts who estimated the parameters but
did not thoroughly check that the assumptions of the
model were correct.  This section presents ways to
check the model assumptions.

That being said, there is more in this section than will
be needed on any one analysis.  Often, a simple plot is
sufficient to show that the model appears adequate.
When the data are very sparse, perhaps not even that is
needed, because the data set is too small to invalidate
any model; in such a case, the simplest model is nor-
mally accepted.  The methods here are offered for
possible use, and the analyst should select the appro-
priate ones.

The Poisson process was introduced in Section 2.2.2.
The three assumptions were listed there:  constant event
occurrence rate, no simultaneous events, and indepen-
dent time periods.  These assumptions are considered
here.  Much of the following material is taken from an
INEEL report by Engelhardt (1994).

The assumption of constant rate is considered in the
next two sections, first, where the alternative possibility
is that different data sources may have different values
of 8, but in no particular order, and then, where the
alternative possibility is that a time trend exists.  Both
graphical methods and formal statistical hypothesis tests
are given for addressing the issues.  The assumption of
no exactly simultaneous events is then discussed from
the viewpoint of examining the data for common-cause
events.  Finally, the assumption of independent time
intervals is considered, and some statistical tests of the
assumption are given.

When Bayesian methods are used, one must also
examine whether the data and the prior distribution are
consistent.  It makes little sense to update a prior with
data, if the data make it clear that the prior belief was
incorrect.  That topic constitutes the final subsection of
the present section.

6.2.3.1 Poolability of Data Subsets

Assumption 1 in Section 2.2.2 implies that there is one
rate 8 for the entire process.  The correctness of such an
assumption can be investigated by analyzing subsets of
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Figure 6.21  MLEs and 90% confidence intervals for
8, based on each plant’s data and based on pooled
data from all the plants.

the data and comparing the estimates of 8 for the
various subsets.

Example 2.2 described LOSP events during shutdown.
For this section, consider a portion of that example.
The entire data set could be used, but to keep the
example from being too cumbersome we arbitrarily
restrict it to five plants at three sites, all located in one
state.  

An obvious question concerns the possibility of differ-
ent rates for different plants.  A general term used in
this handbook will be data subsets.  In Example 6.4,
five subsets are shown, corresponding to plants.  In
other examples, the subsets could correspond to years,
or systems, or any other way of splitting  the data.  For
initiating events, each subset corresponds to one cell in
the table, with an event count and an exposure time.

Example 6.4 Shutdown LOSP events at five
plants, 1980-96.

During 1980-1996, five plants experienced eight
LOSP events while in shutdown.  These were
events from plant-centered causes rather than
external causes.  The data are given here.

Plant
code

Events Plant shutdown
years

CR3 5   5.224

SL1 0   3.871

SL2 0   2.064

TP3 2   5.763

TP4 1   5.586

Totals 8 22.508

Sometimes, data subsets can be split or combined in
reasonable ways.  For example, if the subsets were time
periods, the data could be partitioned into decades,
years, or months.  The finer the division of the cells, the
more sparse the data become within the cells.  Too fine
a partition allows random variation to dominate within
each cell, but too coarse a partition may hide variation
that is present within individual cells.  In the present
simple example, the most reasonable partition is into
plants.  Analysis of more complicated data sets may
require examination of many partitionings. 

First, a graphical technique is given to help the analyst
understand what the data set shows.  Then, a formal
statistical procedure is presented to help quantify the
strength of the evidence for patterns seen in the graphi-
cal investigation.

6.2.3.1.1 Graphical Technique

To explore the relations between cells, identify the cells
on one axis.  Then, for each cell, plot a point estimate
of 8 and an interval estimate of 8 against the other axis.
Patterns such as trends, outliers, or large scatter are then
made visible.

In Example 6.4, the cells are plants.  The data set
from each plant was analyzed separately, using the
tools of Section 6.2.1.  The graph in Figure 6.21
shows the maximum likelihood estimate and a
confidence interval for each plant, plotted side by
side.  For this handbook, the plot was produced with
a graphics software package, although a hand-drawn
sketch would be adequate to show the results.

The confidence interval for the pooled data is also
shown.  Take care, however:  this interval is only
valid if all the plants have the same 8, which is what
must be decided.  Nevertheless, the interval and
point estimate for the pooled data give a useful
reference for comparisons with the individual plants.
For this reason, a vertical dotted line is drawn
through the mean of the pooled data.

Note that the plants are not displayed  in alphabetical
order, which is a meaningless order for the event

rate, but in order of decreasing .  (When two plants$λ
have the same MLE, as do SL1 and SL2, the upper
confidence limit is used to determine the order.)
Experience has shown that such a descending order
assists the eye in making comparisons.

CR3 appears somewhat high compared to the
others.  Although there is considerable overlap of the
intervals, the lower confidence limit for CR3 is just
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barely higher than the MLE for the utility as a whole.
Of course, the picture might give a different impres-
sion if slightly different intervals were used: 95%
confidence intervals instead of 90% confidence
intervals, or Bayes intervals with the Jeffreys
noninformative prior instead of confidence intervals.
From the graph alone, it is difficult to say whether the
data can be pooled.

A graph like this should not be used to draw conclu-
sions without also using a formal statistical test.  For
example, if many confidence intervals are plotted,
based on data sets generated by the same 8, a few will
be far from the others because of randomness alone.
This was seen in Figure 6.4, where all the variation was
due to randomness of the data, and some intervals did
not overlap some others at all.  Thus, an outlying
interval does not prove that the 8s are unequal.  This
same statement is true if other intervals are used, such
as Bayes credible intervals based on the noninformative
prior.  The issue is the random variability of data, not
the kind of interval constructed.

Conversely, if there are only a few intervals, intervals
that just barely overlap can give strong evidence for a
difference in the 8s.

To quantify the strength of the evidence against poola-
bility, a formal statistical procedure is given in the next
subsection.  The graph gives an indication of what the
test might show, and helps in the interpretation of the
test results.  If the statistical test turns out to find a
statistically significant difference between plants, it is
natural then to ask what kind of difference is present.
Figure 6.21 shows that most of the plants appear
similar, with only one possible outlier.  An unusually
long interval, such as that seen in Figure 6.21 for SL2,
is generally associated with a smaller exposure time.
The picture provides insight even though it does not
give a quantitative statistical test.

6.2.3.1.2 Statistical Test

The Chi-Squared Test.  To study whether the rate is
the same for different cells, use a chi-squared test.
Many statistics texts, such as Bain and Engelhardt
(1992, Chapter 13), discuss this test, and many software
packages perform the chi-squared test.  It is presented
here in enough detail so that the reader could perform
the calculations by hand if necessary, because it is
instructive to see how the test works.

Let the null hypothesis be:

H0:  8 is the same in all the data subsets.

In the present application, the data subsets are the five
plants.  The method is to see what kind of data would
be expected when 8 really is constant, and then to see
how much the observed counts differ from the expected
counts.  If the difference is small, the counts are consis-
tent with the hypothesis H0 that the rate is constant.  If,
instead, the difference is large, the counts show strong
evidence against H0.

Write xj and tj for the count and exposure time corre-
sponding to the jth cell, and let x = Gxj and t = Gtj.  If
H0 is true, that is, if 8 is really the same for all the

plants, then the estimate (MLE) of 8 is = x/t.  The$λ
estimate of the expected count is built from this quan-
tity.  Assuming the hypothesis of a single rate 8, an
estimate of the expected count for the jth cell is simply:

.e tj j= $λ

In Example 6.4, the estimate of 8 is 8/22.508 = 0.355
events per shutdown-year.  Therefore, the expected
count for CR3 is the estimate of 8 times the exposure
time for CR3, 0.335 × 5.224 = 1.857 events.  Table
6.6 is an extension of the original table given in
Example 6.4, showing the quantities needed for the
calculation.

Table 6.6 Quantities for calculation of 
chi-squared test.

Cell code xj tj ej

CR3 5 5.224 1.857

SL1 0 3.871 1.376

SL2 0 2.064 0.734

TP3 2 5.763 2.048

TP4 1 5.586 1.985

Totals 8 22.508 8.000

The total of the expected counts agrees with the total
of the observed counts, except possibly for small
round-off error.

The test for equality of rates that is considered here is
based on the following calculated quantity,

X2 = Ej(xj ! ej)
2/ej ,
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sometimes called the Pearson chi-squared statistic,
after its inventor, Karl Pearson, or simply the chi-
squared statistic. The notation became standard long
before the custom developed of using upper-case letters
for random variables and lower-case letters for num-
bers.  In the discussion below, the context must reveal
whether X2 refers to the random variable or the ob-
served value.

Observe that X2 is large if the xjs (observed counts)
differ greatly from the ejs (expected values when H0 is
true).  Conversely, X2 is small if the observed values are
close to the expected values.  This statement is made
more precise as follows.  When H0 is true and the total
count is large, the distribution of X2 has a distribution
that is approximately chi-squared with c ! 1 degrees of
freedom, where c is the number of cells.  If the calcu-
lated value of X2 is large compared to the chi-squared
distribution, there is strong evidence that H0 is false; the
larger the X2 value, the stronger the evidence.

For the data of Table 6.4, X2 = 7.92, which is the
90.6th percentile of the chi-squared distribution with
four degrees of freedom.  The next subsection
discusses the interpretation of this.

Interpretation of Test Results. Suppose, for any
example with 5 cells, that X2 were 9.8.  A table of the
chi-squared distribution shows that 9.488 is the 95th
percentile of the chi-squared distribution with 4 degrees
of freedom, and 11.14 is the 97.5th percentile.  After
comparing X2 to these values, we would conclude that
the evidence is strong against H0, but not overwhelm-
ing.  The full statement is:

• If H0 is true, that is, if all the cells have the same 8,
the chance of seeing such a large X2 is less than
0.05 but more than 0.025.

Common abbreviated ways of saying this are:

• We reject H0 at the 5% significance level, but not
at the 2.5% significance level.

• The difference between cells is statistically signif-
icant at the 0.05 level, but not at the 0.025 level.

• The p-value is between 0.05 and 0.025.

There will be some false alarms.  Even if 8 is exactly
the same for all the cells, sometimes X2 will be large,
just from randomness.  It will be greater than the 95th
percentile for 5% of the data sets, and it will be greater
than the 99th percentile for 1% of the data sets.  If we
observed such a value for X2, we would probably decide
that the data could not be pooled.  In that case, we
would have believed a false alarm and made the incor-
rect decision.  Just as with confidence intervals, we

cannot be sure that this data set is not one of the rare
unlucky ones.  But following the averages leads us to
the correct decision most of the time.

If, instead, X2 were 4.1, it would be near the 60th
percentile of the chi-squared distribution, and therefore
be in the range of values that would be expected under
H0.  We would say the observed counts are consistent
with the hypothesis H0, or H0 cannot be rejected, or the
evidence against H0 is weak.  We would not conclude
that H0 is true, because it probably is not exactly true to
the tenth decimal place, but the conclusion would be
that H0 cannot be rejected by the data.

In fact, for the data of Table 6.6, X2 equals 7.92,
which is the 90.6th percentile of the chi-squared
distribution with 4 degrees of freedom.  That means:
if all five plants have the same event rate, there is a
9.4% probability of seeing such a large value of X2.
The evidence against H0 is not convincingly strong.
CR3 might be suspected of having a higher event
rate, but the evidence is not strong enough to prove
this.

The traditional cut-off is 5%.  The difference between
cells is called statistically significant, with no qualify-
ing phrase, if it is significant at the 0.05 level.  This is
tradition only, but it is very widely followed.

In actual data analysis, do not stop with the decision
that a difference is, or is not, statistically significant.
Do not even stop after reporting the p-value.  That may
be acceptable if the p-value is very small (much less
than 0.05) or very large (much larger than 0.05).  In
many cases, however, statistical significance is far from
the whole story.  Engineering significance is just as
important.

To illustrate this, consider a possible follow-up to the
above statistical analysis of Example 6.4.  As men-
tioned, the statistical evidence against poolability is not
strong, but some might consider it borderline.  There-
fore, a thorough analysis would ask questions such as:

• Are there engineering reasons for expecting CR3
to have a different event rate than the other plants
do, either because of the hardware or because of
procedures during shutdown?  (Be warned that it
is easy to find justifications in hindsight, after
seeing the data.  It might be wise to hide the data
and ask these questions of a different knowledge-
able person.)

• What are the consequences for the PRA analysis
if the data are pooled or if, instead, CR3 is treated
separately from the other plants?  Does the deci-
sion to pool or not make any practical difference?
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Required Sample Size.  The above considerations are
valid if the total count is “large,” or more precisely, if
the ejs are “large.”  If the ejs are small, the chi-squared
distribution is not a good approximation to the distribu-
tion of X2.  Thus, the user must ask how large a count is
necessary for the chi-squared approximation to be
adequate.  An overly conservative rule is that each
expected cell-count, ej, should be 5.0 or larger.  Despite
its conservatism, this rule is still widely used, and cited
in the statistical literature and by some software pack-
ages.

A readable discussion of chi-squared tests by Moore
(1986, p.71) is applicable here.  Citing the work of
Roscoe and Byars (1971), the following recommenda-
tions are made:

(1) With equiprobable cells, the average expected
frequency should be at least 1 when testing at the
0.05 level.  In other words, use the chi-squared
approximation at the 5% level when x/c $ 1,
where x is the number of events and c is the
number of cells.  At the 1% level, the chi-squared
approximation is recommended if x/c $ 2.

(2) When the cells are not approximately equiproba-
ble, the average expected frequencies in (1)
should be doubled.  Thus, the recommendation is
that at the 5% level x/c $ 2, and at the 1% level
x/c $ 4.

Note that in rules (1) and (2) above, the recommen-
dation is based on the average rather than the minimum
expected cell-count.  As noted by Koehler and Larntz
(1980), any rule such as (2) may be defeated by a
sufficiently skewed assignment of cell probabilities.

Roscoe and Byars also recommend when c = 2 that the
chi-squared test should be replaced by the test based on
the exact binomial distribution of X1 conditional on the
total event count.  For example, if the two cells had the
same exposure times, we would expect that half of the
events would be generated in each cell.  More gener-
ally, if

• the two cells have exposure times t1 and t2,
• a total of x events are observed, and
• 8 is the same for both cells,

then, conditional on x, X1 has a binomial(n, p) distribu-
tion, with p = t1/(t1 + t2). Exact binomial tests are
discussed by Bain and Engelhardt (1992, p.405).

Example 6.4 has x = 8 and c = 5.  The cells are not
equiprobable, that is, ej is not the same for all cells,
because the plants did not all have the same exposure

time.  Nevertheless, the expected cell counts differ from
each other by, at most, a factor of two.  This is not a
large departure from equiprobability, as differences of
an order of magnitude would be.  Because x/c = 1.6,
and the calculated significance level is about 10%, the
sample size is large enough for the chi-squared approxi-
mation to be adequate.  The conclusions reached earlier
still stand.  If, on the other hand, the sample size had
been considerably smaller, one would have to say that
the p-value is approximately given by the chi-squared
distribution, but that the exact p-value has not been
found.

If the expected cell-counts are so small that the chi-
squared approximation is not recommended, the analyst
can pool data in some “adjacent cells,” thereby increas-
ing the expected cell-counts.

In the Example 6.4, suppose that there were engineering
reasons for thinking that the event rate is similar at units
at a single site.  Then, the sister units might be pooled,
transforming the original table of Example 6.4 into
Table 6.7 here.

Table 6.7 Shutdown LOSP events at three
sites, 1980-96.

Site code Events Plant shutdown years

CR 5 5.224

SL 0 5.935

TP 3 11.349

We repeat, this pooling of cells is not required with the
actual data, but it could be useful if (a) the cell counts
were smaller and (b) there were engineering reasons for
believing that the pooled cells are relatively homoge-
neous, that is, the event rates are similar for both units
at a site, more similar than the event rates at different
sites.

Generally speaking, a chi-squared test based on a larger
number of cells will have better power for detecting
when rates are not equal, but this also makes it more
difficult to satisfy guidelines on expected cell-counts
for the chi-squared approximation.  Thus, it is some-
times necessary to make a compromise between ex-
pected cell counts and the number of cells.

Options involving the exact distribution of X2 are also
possible.  The most widely known commercial software
for calculating the exact p-value is StatXact (1999).
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Figure 6.22  MLEs and 90% confidence intervals
for 8, each based on data from one calendar year.

6.2.3.2 No Time Trend

The chi-squared method given above does not use any
ordering of the cells.  Even if the test were for differ-
ences in years, say, the test would not use the natural
ordering by calendar year or by plant age. When there
is a meaningful order to the data subsets, it may be
useful to perform additional analyses.  The analysis
given above is valid, but an additional possible analysis,
making use of time order, is considered now.

The methods will be illustrated with Example 6.5. 

6.2.3.2.1 Graphical Techniques

Confidence-Interval Plot.  First, the same kind of plot
that was used in the previous subsection can be used
here.  The time axis is divided into cells, or bins in the
terminology of some authors.  For example, if the time
span is divided into calendar years, the counts and
reactor-critical-years for Example 6.5 are given in
Table 6.8.

Example 6.5 Unplanned HPCI demands.

Grant et al. (1995, Table B-5) list 63 unplanned
demands for the HPCI system to start at 23 BWRs
during 1987-1993.  The demand dates are  given
in columns below, in format MM/DD/YY.

01/05/87
01/07/87
01/26/87
02/18/87
02/24/87
03/11/87
04/03/87
04/16/87
04/22/87
07/23/87
07/26/87
07/30/87
08/03/87

08/03/87
08/16/87
08/29/87
01/10/88
04/30/88
05/27/88
08/05/88
08/25/88
08/26/88
09/04/88
11/01/88
11/16/88
12/17/88

03/05/89
03/25/89
08/26/89
09/03/89
11/05/89
11/25/89
12/20/89
01/12/90
01/28/90
03/19/90
03/19/90
06/20/90
07/27/90

08/16/90
08/19/90
09/02/90
09/27/90
10/12/90
10/17/90
11/26/90
01/18/91
01/25/91
02/27/91
04/23/91
07/18/91
07/31/91

08/25/91
09/11/91
12/17/91
02/02/92
06/25/92
08/27/92
09/30/92
10/15/92
11/18/92
04/20/93
07/30/93

Table 6.8 HPCI demands and reactor-critical-
years.

Calendar
year

HPCI 
demands

Reactor-critical-
years

1987 16 14.63

1988 10 14.15

1989   7 15.75

1990 13 17.77

1991   9 17.11

1992   6 17.19

1993   2 17.34

This table has the same form as in Example 6.4,
showing cells with events and exposure times.  The
relevant exposure time is reactor-critical-years,
because the HPCI system uses a turbine-driven
pump, which can only be demanded when the
reactor is producing steam.  The counts come from
the tabulated events of Example 6.5, and the critical-
years can be constructed from information in Poloski
et al. (1999a).  The variation in critical-years results
from the facts that several reactors were shut down
for extended periods, and one reactor did not receive
its low power license until 1989.

This leads to a plot similar to Figure 6.21, showing
the estimated value of the demand frequency, 8, and
a confidence interval for each year.  This is shown in
Figure 6.22.

Figure 6.22 seems to indicate a decreasing trend in the
frequency of HPCI demands.  However, the picture
does not reveal whether the apparent trend is perhaps
merely the result of random scatter.  To answer that
question, a  formal statistical test is necessary, quantify-
ing the strength of the evidence.  Such tests will be
given in Section 6.2.3.2.2.

Cumulative Plot.  Figure 6.22 required a choice of
how to divide the time axis into cells.  A different plot,
given next, does not require any such choice, if the
dates of the events are recorded.  Plot the cumulative
event count at the n event dates.

Figure 6.23 shows this for Example 6.5.  The events
are arranged in chronological order, and the cumula-
tive count of events is plotted against the event
times.

The slope of a string of plotted points is defined as the
vertical change in the string divided by the horizontal
change, )y/)x.  This is the familiar definition of slope
from mathematics courses.  In the plot given here, the
horizontal distance between two points is elapsed time,
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Figure 6.23  Cumulative number of HPCI demands,
by date.

and the vertical distance is the total number of events
that occurred during that time period.  Therefore,

slope = (number of events)/(elapsed time) ,

so the slope is a graphical estimator of the event fre-
quency, 8.  A constant slope, or a straight line, indicates
a constant 8.  Changes in slope indicate changes in 8:
if the slope becomes steeper, 8 is increasing, and if the
slope becomes less steep, 8 is decreasing.

In Example 6.5 the time axis represents calendar
years.  Because the relevant frequency is events per
reactor-critical-year, it would be better to plot the time
axis in terms of total reactor-critical-years from the
start of 1987.  However, it is somewhat difficult to
calculate the reactor-critical-years preceding any
particular event, or equivalently, the reactor-critical-
years between successive events.  Therefore, simple
calendar years are used.  This is adequate if the
number of reactors operating at any time is fairly
constant, because then the rate per reactor-critical-
year remains roughly proportional to the rate per
industry-calendar year.  In the present case, as
shown by Table 6.8, later calendar-years correspond
to more critical-years than do early calendar- years.

The slope in Figure 6.23 is steepest on the left, and
gradually lessens, so that the plot is rising fastest on
the left and more gently on the right.  More HPCI
demands are packed into a time interval on the left
than into a time interval of the same length on the
right.  This indicates that the frequency of unplanned
HPCI demands was decreasing during the time
period of the study.  Thus, this figure leads to the
same general conclusion as does Figure 6.22.

Figure 6.23 shows more detail, with the individual
events plotted, but it is less accurate in this example
because we have not gone through the work of
plotting events versus reactor-critical time.

It is important that the horizontal axis cover the entire
data-collection period and not stop at the final event.  In
Figure 6.23, the lack of events during the last half of
1993 contributes to the overall curvature of the plot.

If the frequency is constant, the plot should follow a
roughly straight line.  For comparison, it is useful to
show a straight diagonal line, going from height 0 at the
start of the data collection period to height n + 1 at the
end of the data collection period, where n is the number
of data points.

In Figure 6.23, the diagonal line is shown as a dotted
line, rising from height 0 on the left to height n + 1 =
64 on the right.

As mentioned above, the early calendar years
contain fewer reactor-critical-years than do the later
calendar years.  Therefore, the time axis in Figure
6.23 would reflect reactor-critical-years more accu-
rately if the left end of the axis were compressed
slightly or the right end were stretched slightly.  The
effect would be to increase the curvature of the plot,
making it rise more quickly on the left and more
slowly on the right.

A cumulative plot contains random bounces and clus-
ters, so it is not clear whether the observed pattern is
more than the result of randomness.  As always, a
formal statistical test will be needed to measure the
strength of the evidence against the hypothesis of
constant event frequency.

6.2.3.2.2 Statistical Tests for a Trend in 8

The Chi-Squared Test.  This is the same test as given
in Section 6.2.3.1.2, only now the cells are years or
similar divisions of time.

In Example 6.5, the p-value is 0.009, meaning that a
random data set with constant 8 would show this
much variability with probability only 0.9%.  Two
points are worth noting.

• The chi-squared test makes no use of the order
of the cells.  It would give exactly the same
conclusion if the intervals in Figure 6.22 were
scrambled in a random order instead of gener-
ally decreasing from left to right.
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• The calculated p-value is accurate enough to
use, by the guidelines of Section 6.2.3.1.2,
because the number of events is 63, and the
number of cells is 7, so x/c = 63/7 = 9.  Even
splitting the cells into six-month periods or smal-
ler periods would be justified.

Chapter 7 will take Figure 6.22, fit a trend, and perform
an additional test based on the fit; see Sections 7.2.3
and 7.2.4.  Therefore, the chi-squared test is not dis-
cussed further here.  

The Laplace Test.  This test does not use the binning
of times into cells, but instead uses the exact dates.  In
the example, there are 63 occurrences of events during
a seven-year period.  In general, consider a time interval
[0, L], and suppose that during this period n events
occur at successive random times T1, T2, ... , Tn.  Al-
though the number of occurrences, n, is random when
the plants are observed for a fixed length of time L, we
condition on the value of n, and so treat it as fixed.
Consider the null hypothesis:

H0: 8 is constant over time.

Consider the alternative hypothesis:

H1: 8 is either an increasing or a decreasing function of
time.

This hypothesis says that the events tend to occur more
at one end of the interval than at the other.  A test that
is often used is based on the mean of the failure times,

.  The intuitive basis for the test is theT T ni i= Σ /

following.  If 8 is constant, about half of the events
should occur before time L/2 and half afterwards, and
the average event time should be close to L/2.  On the
other hand, if 8 is decreasing, more events are expected
early and fewer later, so the average event time should
be smaller than L/2.  Similarly, if 8 is increasing, the
average event time is expected to be larger than L/2.

Therefore, the test rejects H0 if  is far from L/2.T
Positive values of the difference ! L/2 indicate anT
increasing trend, and negative values indicate a decreas-
ing trend.  

When H0 is true, has expected value L/2 and varianceT
L2/(12n).  The resulting test statistic is

 .U
T L

L n
=

− /

/
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The statistic U is approximately standard normal for n
$ 3.  A test of H0 at significance level 0.05 versus an
increasing alternative,

H1: 8 is increasing in time,

would reject H0 if U $ 1.645.  A 0.05 level test versus
a decreasing alternative,

H1: 8 is decreasing in time,

would reject H0 if U # !1.645.  Of course, ±1.645 are
the 95th and 5th percentiles, respectively, of the stan-
dard normal distribution.  A two-sided test, that is, a test
against the original two-sided alternative hypothesis, at
the 0.10 level would reject H0 if |U| $ 1.645.

This test, generally known as the “Laplace” test, is
discussed by Cox and Lewis (1978, p. 47).  The La-
place test is known to be good for detecting a wide
variety of monotonic trends, and consequently it is
recommended as a general tool for testing against such
alternatives.

Let us apply the Laplace test to the HPCI-demand
data of Example 6.5.  First, the dates must be con-
verted to times.  The first event time is 0.011 years
after January 1, 1987, the final event is 6.581 years
after the starting date, and the other times are
calculated similarly.  Here, a “year” is interpreted as
a 365-day year.  The total number of 365-day years
is L = 7.00.  The mean of the event times can be
calculated to be 2.73.  Therefore, the calculated
value of U is
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This is statistically very significant.  The value 3.02 is
the 0.1th percentile of the standard normal distribu-
tion. Thus, the evidence is very strong against a
constant demand rate, in favor instead of a decreas-
ing demand rate.  Even against the two-sided hy-
pothesis

H1:  8 is increasing or decreasing in time,

the p-value is Pr( |U| > 3.02) = 0.002.

In the example, the Laplace test statistic was calcu-
lated in terms of calendar time instead of reactor-
critical-time.  As remarked earlier, using reactor-
critical-time would increase the curvature of the plot
in Figure 6.23.  A similar argument shows that using
reactor-critical-time in computing U would increase
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the strength of the evidence against the hypothesis
of a constant demand rate.  However, the computa-
tions would be very tedious.  That is an advantage of
the chi-squared test, because it is typically easier to
find the exact relevant exposure time for blocks of
time, such as years, than for each individual event.

In the example, the result of the Laplace test agrees
with the result from the chi-squared test, but is more
conclusive.  The chi-squared test gave a p-value of
0.009, meaning that if H0 is true, the cells would
appear so different from each other with probability
only 0.009.  The Laplace test gives a p-value of
0.002.

The chi-squared and Laplace tests differ because they
are concerned with different alternatives to H0.  The
chi-squared test is concerned with any variation from
cell to cell (from year to year in the example).  If the
event rate goes up and down erratically, that is just as
much evidence against H0 as if the event rate decreases
monotonically.  The Laplace test, on the other hand, is
focused on the alternative of a trend.  It has more power
for detecting trends, but no power at all for detecting
erratic changes upward and downward.

Other tests exist in this setting.  See Ascher and Fein-
gold (1984, page 80) and Engelhardt (1994, p. 19) for
details.

6.2.3.3 No Multiple Failures

The second assumption of the Poisson process is that
there are no exactly simultaneous failures.  In practice
this means that common-cause failures do not occur.  In
most situations, common-cause failures will occur from
time to time.  This was seen in some of the examples
discussed in Section 2.2.  However, if common-cause
events are relatively infrequent, their effect on the
validity of the Poisson model can normally be ignored.

No statistical methods are given here to examine
whether common-cause events can occur.  Instead, the
analyst should think of the engineering reasons why
common-cause events might be rare or frequent, and the
data should be examined to discover how frequent
common-cause events are in practice.

In Example 6.5, HPCI demands, it is reasonable that
common-cause events could occur only at multiple
units at a single site.  There was one such pair of
events in the data, with HPCI demands at Hatch 1
and Hatch 2, both on 08/03/87.  Examination of the
LERs reveals that the demands occurred from
different causes.  They happened at different times,
and so were not exactly simultaneous.  The conclu-

sion is that common causes may induce exactly
simultaneous events, but they are infrequent.

If common-cause events are relatively frequent, so that
they cannot be ignored, it might be necessary to per-
form two analyses, one of the “independent”, or not-
common-cause, events, and one of the common-cause
occurrences.  The frequency of independent events
could be estimated using the methods given here.  The
common cause events would have to be analyzed by
other methods, such as methods described in the
references given in Section 1.3.

6.2.3.4 Independence of Disjoint Time Periods

This section is less important than the others, and of
interest only to truly dedicated readers.  Others should
skip directly to Section 6.2.3.5.

The final assumption of the Poisson model is that event
occurrences in disjoint time periods are statistically
independent.  This should first be addressed by careful
thinking, similar to that in the examples of Section 2.2.
However, the following statistical approach may also be
useful.

One possible type of dependence would be if events
tend to cluster in time:  large between-event times tend
to occur in succession, or similarly small ones tend to
occur in succession.  For example, suppose that a repair
is done incorrectly several times in succession, leading
to small times between failures.  The occurrence of a
failure on one day would increase the probability of a
failure in the next short time period, violating the
Poisson assumption.  After the problem is diagnosed,
the personnel receive training in proper repair proce-
dures, thereafter resulting in larger times between
failures.

To illustrate the ideas, an example with no trend is
needed.  The shutdown LOSP events introduced in
Section 2.2 can be used as such an example.  The
data are restricted here to the years 1991-1996,
primarily to reduce any effect of the overall down-
ward trend in total shutdown tome. Atwood et al.
(1998) report 24 plant-centered LOSP events during
shutdown in 1991-1996.  They are given as Exam-
ple 6.6.

The null hypothesis is that the successive times between
events are independent and exponentially distributed.
We consider the alternative hypotheses that

• the times are not exponentially distributed, possi-
bly with more short times between events than
expected from an exponential distribution; or
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• successive times are correlated, that is that short
times tend to be followed by short times and long
times by long times.

Example 6.6 Dates of shutdown LOSP
events and days between
them.

The consecutive dates of shutdown LOSP
events are shown in columns below.  After each
date is the time since the preceding event, in
days.  For the first event, the time since the
start of the study period is shown.  Also, the
time is shown from the last event to the end of
the study period, a 25th “between-event time.”

03/07/91    66
03/13/91      6
03/20/91      7
04/02/91    13
06/22/91    81
07/24/91    32
10/20/91    88
01/29/92  101
03/23/92    54

04/02/92   10
04/06/92     4
04/28/92    22
04/08/93  345
05/19/93    41
06/22/93    34
06/26/93      4
10/12/93  108
05/21/94  221

09/27/94  129
11/18/94    52
02/27/95  101
10/21/95  236
01/20/96    91
05/23/96  124
    —        223

Section 6.6.2.3 discusses ways to investigate whether
data come from a particular distribution.  Therefore, the
issue of the exponential distribution is deferred to that
section.  The issue of serial correlation motivates the
following procedure.  Let yi be the ith time between
events, and let xi be the (i!1) time between events, xi =
yi!1.  We look to see if xi and yi are correlated.

In the above example, the first few (x, y) pairs are
(66, 6), (6, 7), and (7, 13), and the final pair is (124,
223).

6.2.3.4.1 Graphical Method

As just mentioned, the issue of whether the distribution
is exponential is deferred to Section 6.6.2.3.  Consider
here the question of serial correlation.  A scatter plot of
x versus y will indicate whether the values are corre-
lated.  However, with skewed data the large values tend
to be visually dominant, distorting the overall message
of the plot.  One could try an ad hoc transformation,
such as the logarithmic transformation, but a more
universally applicable approach is to use the ranks of
the variables.  That is, sort the n times in increasing
order, and assign rank 1 to the smallest time and rank n
to the largest time.

In the example, the two shortest times are each
equal to 4 days.  Each is assigned the average of
ranks 1 and 2, namely 1.5.  The next largest time is

6 days, which is assigned rank 3, and so forth.  The
17th and 18th times are each 101 days, so those two
are each assigned rank 17.5.  Selected values of x,
y and their ranks are shown in Table 6.9.  For com-
pactness, not all of the values are printed.

Table 6.9 Calculations for analyzing LOSP
dates.

x rank(x) y rank(y)

  —
  66
    6
    7
  13
  81
  32
  88
101
  54
  ...
  52
101
236
  91
124
223

  —
  13
    3
    4
    6
  14
    8
  15
  17.5
  12
  ...
  11
  17.5
  24
  16
  20
  23

  66
    6
    7
  13
  81
  32
  88
101
  54
  10
  ...
101
236
  91
124
223
  —

  13
    3
    4
    6
  14
    8
  15
  17.5
  12
    5
  ...
  17.5
  24
  16
  20
  23
  —

Figure 6.24 shows a scatter plot of rank(x) versus
rank(y).  The plot seems to show very little pattern,
indicating little or no correlation from one time to the
next.  The barely perceptible trend from lower left to
upper right (“southwest to northeast”) is probably not
meaningful, but a hypothesis test will need to be
performed to confirm or refute that judgment.

rank(x)
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Figure 6.24  Scatter plot of rank(x) versus rank(y).
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6.2.3.4.2 Statistical Tests
 
This section considers whether the between-event times
are serially correlated.  The question of whether they
are exponentially distributed is discussed in Section
6.6.2.3, under the topic of goodness-of-fit tests.

To test for correlation, it is not appropriate to assume
normality of the data.  Instead, a nonparametric test
should be used, that is, a test that does not assume any
particular distributional form.  A test statistic that is
commonly produced by statistical software is Kendall’s
tau (J).  Tau is defined in Conover (1999), Hollander
and Wolfe (1999), and other books on nonparametric
statistics. 

Based on the data of Table 6.9, the hypothesis of no
correlation between X and Y was tested.  Kendall’s
tau gave a p-value of 0.08.  This calculation indicates
that the very slight trend seen in Figure 6.24 is not
statistically significant.

Recall, from the discussion of Section 6.2.3.1.2, that
a small p-value is not the end of an analysis.  The p-
value for this example, although larger than the
customary cut-off of 0.05, is fairly small.  This indi-
cates that the trend in Figure 6.24 is somewhat
unlikely under the assumption of no correlation.  If
we are concerned about this fact, we must seek
possible engineering mechanisms for the trend.  The
data are times between LOSP events in the industry
as a whole.  Therefore, the most plausible explana-
tion is the overall industry trend of fewer shutdown
LOSP events.  This trend would produce a tendency
for the short times to occur together (primarily near
the start of the data collection period), and the long
times to occur together (primarily near the end of the
data period).

6.2.3.5 Consistency of Data and Prior

As an example, if the prior distribution has mean
Eprior(8), but the observed data show x/t very different
from the prior mean, the analyst might wonder if the
data and the prior are consistent, or if, instead, the prior
distribution was misinformed.  To investigate this, one
could ask what the prior probability is of getting the
observed data.  Actually, any individual x may have
small probability, so a slightly more complicated
question is appropriate.

Suppose first that x/t is in the right tail of the prior
distribution.  The relevant quantity is the prior probabil-
ity of observing x or more events.  This is

(6.6)Pr( ) Pr( | ) ( )X x X x f d≥ = ≥∫ λ λ λprior
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In general, Equation 6.6 does not have a direct analyti-
cal expression. However, in the special case when the
prior distribution is gamma("prior, $prior), it can be shown
that the probability in question equals
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where '(s) is the gamma function, a generalization of
the factorial function as described in Appendix A.7.6.
The distribution defined by Equation 6.8 is named the
gamma-Poisson or negative binomial distribution.
The above probability can be evaluated with the aid of
software.

When Equation 6.8 is not applicable, one method of
approximating the integral in Equation 6.6 is by Monte
Carlo sampling.  Generate a large number of values of
8 from the prior distribution.  For each value of 8, let y
be the value of Equation 6.7, which can be calculated
directly.  The average of the y values is an approxima-
tion of the integral in Equation 6.6.  Another method of
approximating the Equation 6.6 is by numerical integra-
tion.

If the probability given by Equation 6.6 is small, the
observed data are not consistent with the prior belief —
the prior belief mistakenly expected 8 to be smaller
than it apparently is.  When should the probability be
considered “small”?  Many people consider probabili-
ties < 0.05 to be “small,” but there is no rigid rule.

Similarly, if x/t is in the left tail of the prior distribution,
the relevant quantity is the prior probability that X # x.
When the prior is a gamma distribution, the desired
probability is the analogue of the sum in Equation 6.8,
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In any case, the desired probability can be approxi-
mated by Monte Carlo sampling.  If that probability is
small, the prior distribution mistakenly expected 8 to be
larger than it apparently is.
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In Example 6.3, we ask whether the observed zero
failures in 2102 reactor-calendar-years is consistent
with the WASH-1400 prior, lognormal with median
1E-3 per year and error factor 10.  To investigate
this, 100,000 random values of 8 were generated
from the lognormal prior.  (The details are given
below.)  For each 8, Pr(X # 0) = exp(!21028) was
found.  The mean of these probabilities was 0.245.
This is a sample mean, and it estimates the true
probability.  It is not small, and therefore gives no
reason to question the applicability of the prior.

One must ask whether the sample was large enough.
The software that calculated the sample mean also
calculated the standard error to be 0.0009.  Recall
from Section 6.2.1.2 that in general a 95% confi-
dence interval can be approximated as the estimate
plus or minus 2×(standard error).  In this case, this
interval becomes 0.245 ± 0.002.  We conclude that
the true mean equals 0.245 except perhaps for
random error in the third digit.  This shows that the
sample size was more than large enough to give an
answer to the accuracy required.

The recipe for generating 8 from a lognormal distribu-
tion is as follows:

(1) Generate z from a standard normal distribution,
using commercial software,

(2) Define loglam = : + Fz, where : and F were
found in Section 6.2.2.7.2, and then

(3) Define lambda = exp(loglam).

6.3 Failures to Change State: 
Failure on Demand

This section is similar to Section 6.2, but the details are
different.  The structure of this section parallels that of
Section 6.2 almost exactly, and some admonitions from
that section are repeated here.  The most important
topics for a first-time reader are:

• Maximum likelihood estimation (6.3.1.1),
• Bayesian estimation, especially with a discrete

prior or a conjugate prior (6.3.1-6.3.2.3), and
• Model validation, especially using graphical tools

(portions of 6.3.3).

This section applies to data satisfying the assumptions
of Section 2.3.2.1.  The probability of a failure on
demand is denoted p, a unitless quantity.  The data
consist of x failures in n demands, with 0 # x # n.
Before the data are generated, the number of failures is
random, denoted X.  For any particular number x, the
probability of x failures in n demands is

 , (6.9)Pr( ) ( )X x
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The methods will be illustrated by the following hypo-
thetical data set.

Example 6.7 AFW turbine-train failure to start

In the last 8 demands of the turbine train of the
auxiliary feedwater (AFW) system at a PWR, the
train failed to start 1 time.  Let p denote the
probability of failure to start for this train.

 
As in Section 6.2, frequentist methods are presented
first, followed by Bayesian methods.  This choice is
made because the frequentist point estimate is so very
simple, not because frequentist estimation is preferable
to Bayesian estimation.  Indeed, in PRA p is normally
estimated in a Bayesian way.

6.3.1 Frequentist or Classical Estimation

6.3.1.1 Point Estimate

The most commonly used frequentist estimate is the
maximum likelihood estimate (MLE).  It is found by
taking the likelihood, given by Equation 6.9, and
treating it as a function of p.  The value of p that maxi-
mizes the likelihood is called the MLE.  It can be
shown, by setting a derivative to zero, that the maxi-

mum likelihood estimate (MLE) of p is .$ /p x n=

This is intuitively appealing – the observed number of
failures divided by the observed number of demands.

Figure 6.25 shows the likelihood as a function of p,
for the data of Example 6.7.  The figure shows that
the likelihood is maximized at p = 1/8, as stated by
the formula.

If several subsets of data, such as data corresponding to
several plants, several types of demand, or several
years, are assumed to have the same p, data from the
various sources may be combined, or pooled, for an
overall estimate.  Denoting the number of failures and
demands in data subset j by xj and nj, respectively, let x
= Ejxj and n =  Ejnj.  The MLE is x/n.
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Figure 6.25  Likelihood as a function of p, for the
data of Example 6.7.

As mentioned in Section 6.2.1.1, final answers will be
shown in this handbook with few significant digits, to
avoid giving the impression that the final answer
reflects precise knowledge of the parameter.  Inter-
mediate values will show more significant digits, to
prevent roundoff errors from accumulating.

6.3.1.2 Standard Deviation of Estimator

The number of failures is random.  One number was ob-
served, but if the demands were repeated a different
number of failures might be observed.  Therefore, the
estimator is random, and the calculated estimate is the
value it happened to take this time.  Considering the
data as random, one could write .  This$ /P X n=
notation is consistent with the use of upper case letters
for random variables, although it is customary in the
literature to write  for both the random variable and$p

the calculated value.  The standard deviation of the
estimator is [p(1 - p)/n]1/2.  Substitution of the
estimate  for p yields an estimate of the standard$p

deviation,

  . [ $( $) / ] /p p n1 1 2−

The estimated standard deviation of an estimator is also
called the standard error of the estimate.  The handy
rule given in Section 6.2.1.2 applies here as well:

MLE ± 2×(standard error)

is an approximate 95% confidence interval for p, when
the number of demands, n, is large.  However, an exact
confidence interval is given below.

In Example 6.7, the standard error for p is

[0.125 × (1 - 0.125) / 8]1/2 = 0.12.

6.3.1.3 Confidence Interval for p

Confidence intervals are used in two ways in this
handbook.  They give a standard of comparison, when
Bayes credible intervals are found based on so-called
noninformative priors, and they can be used (but are not
required) in some plots for validating model assump-
tions.  Therefore, readers may wish to skim the present
section quickly on the first reading.

The interpretation of confidence intervals is given in
Appendix B and in Section 6.2.1.3.  It is so important
that it is repeated here.  In the frequentist approach, p is
fixed and the data are random.  Therefore the maximum
likelihood estimator and the confidence limits are all
random.  For most data sets, the MLE, , will be close$p
to the true value of p, and the confidence interval will
contain p.  Sometimes, however, the MLE will be rather
far from p, and sometimes (less than 10% of the time)
the 90% confidence interval will not contain p.  The
procedure is good in the sense that most of the time it
gives good answers, but the analyst never knows if the
current data set is one of the unlucky ones.  A figure
like Figure 6.4 could be constructed for p, to illustrate
that many data sets could be generated from the same p,
yielding many confidence intervals, most of which
contain the true value of p.

The following material is drawn from Johnson et al.
(1992, Section 3.8.3).  A confidence interval for p can
be expressed in terms of percentiles of a beta distribu-
tion.  Appendix A.7.8 presents the basic facts about the
beta distribution.  As mentioned there, the beta family
of distributions includes many distributions that are
defined on the range from 0 to 1, including the uniform
distribution, bell-shaped distributions, and U-shaped
distributions.  The beta distribution is also discussed
more fully in the section below on Bayesian estimation.

Denote the lower and upper ends of a 100(1 ! ")%
confidence interval by pconf, "/2 and pconf, 1!"/2, respec-
tively.  It can be shown that the lower limit is

pconf, "/2 = beta"/2(x, n ! x + 1)

and the upper limit is

pconf, 1!"/2 = beta1 ! "/2(x + 1, n ! x)
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where betaq(", $) denotes the q quantile, or 100×q
percentile, of the beta(", $) distribution.  For example,
a 90% confidence interval for p is given by beta0.05(x, n
! x + 1) and beta 0.95(x + 1, n ! x).  If x = 0, the beta
distribution for the lower limit is not defined; in that
case, set pconf, "/2 = 0.  Similarly, if  x = n, the beta distri-
bution for the upper limit is not defined; in that case, set
pconf, 1 ! "/2 = 1.  In any case, note carefully that the
parameters of the beta distribution are not quite the
same for the lower and upper endpoints. 

Appendix C tabulates selected percentiles of the beta
distribution.  However, interpolation may be required.
Some software packages, including commonly used
spreadsheets such as Microsoft Excel (2001) and
Quattro Pro (2001), calculate the percentiles of the beta
distribution.  Those calculations are more accurate than
interpolating tables.  Finally, Appendix A.7.8 gives a
last-resort method, which allows beta percentiles to be
calculated by complicated formulas involving tabulated
percentiles of the F distribution.

In Example 6.7, with 1 AFW train failure in 8
demands, suppose that a 90% interval is to be
found.  Then " = 0.10, and 1!"/2 = 0.95.  For the
lower limit, beta0.05(1, 8!1+1) = 6.39E!3, from
Table C.5.  Thus,

pconf, 0.05 = 0.0064.

For the upper limit, beta0.95(1+1, 8!1) = 4.71E!1,
also from Table C.5.  Thus,
 
pconf, 0.95 = 0.47.

6.3.2 Bayesian Estimation

Section 6.2.2.1 gives an overview of Bayesian estima-
tion, which applies here.  Just as for 8 in that section,
Bayesian estimation of p involves several steps.  The
prior belief about p is quantified by a probability
distribution, the prior distribution.  This distribution
will be restricted to the range [0,1], because p must lie
between 0 and 1, and it will assign the most probability
to the values of p that are deemed most plausible.  The
data are then collected, and the likelihood function is
constructed.  The likelihood function is given by
Equation 6.9 for failures on demand.  It is the probabil-
ity of the observed data, written as a function of p.
Finally, the posterior distribution  is constructed, by
combining the prior distribution and the likelihood
function through Bayes’ theorem.  The posterior
distribution shows the updated belief about the values
of p.  It is a modification of the prior belief that ac-
counts for the observed data.

Figure 6.5, showing the effect of various data sets on
the posterior distribution, is worth studying.  Although
that figure refers to 8, exactly the same idea applies
to p.

The subsections below consider estimation of p using
various possible prior distributions.  The simplest prior
distribution is discrete.  The posterior can be calculated
easily, for example, by a spreadsheet.  The next sim-
plest prior is called conjugate; this prior combines
neatly with the likelihood to give a posterior that can be
evaluated by simple formulas.  Finally, the most general
priors are considered; the posterior distribution in such
a case can only be found by numerical integration or by
random sampling.

Section 6.2.2.2 discusses how to choose a prior, and
gives references for further reading.  It applies to
estimation of p as much as to estimation of 8, and
should be read in connection with the material given
below.

6.3.2.1 Estimation with a Discrete Prior

The explanation here will be easier to follow if the
examples in Section 6.2.2.3 have also been read.  The
parameter p is assumed to take one of only m possible
values, p1, ... , pm.  Denote the p.d.f. by  f, so f(pi) =
Pr(pi), the prior probability that the parameter has the
value pi.  After evidence  E is observed, Bayes’ theorem
says:

(6.10)f p E
f p L E p

L E p f p
i

i i

j jj

m( | )
( ) ( | )

( | ) ( )
=

=∑ 1

where

f(pi | E) = the probability of pi given evidence E 
(posterior distribution),

f(pi) = the probability of pi prior to having evidence
E ( prior distribution), and

L(E | pi) = the likelihood function (probability of the
evidence given pi).

Just as in Section 6.2.2.3, the denominator in Equation
6.10, the total probability of the evidence E, is simply
a normalizing constant.

When the evidence is in the form of x failures in n
demands and the assumptions for a binomial distribu-
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Figure 6.26  Discrete informative prior distribution
for p.
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Figure 6.27  Discrete prior and posterior distribution
for data in Example 6.7.
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Figure 6.28  Likelihood as a function of p, for ten
times the data of Example 6.7.

tion are satisfied, the likelihood function is the given by
Equation 6.9:

.L E p
n

x
p pi

x
i

n x( | ) ( )=
⎛
⎝
⎜

⎞
⎠
⎟ − −1

As an example, let us use the data in Example 6.7.
We will use a discrete prior distribution, just as in
Section 6.2.2.3.  Unlike the examples in that earlier
section, the present example uses an informed prior.
Assume that a prior distribution was developed by
plant equipment experts based on population vari-
ability data from similar systems, but adapted to
account for untested new design aspects of this
system.  The prior is defined on 81 points, for p = 0,
0.01, 0.02, ..., 0.8.  The most likely value is p = 0.1.
From there, the prior falls linearly until p = 0.3, then
tails off to 0 at p =  0.8.  On the low end it falls
linearly to 0 at p = 0.  The distribution is shown in
Figure 6.26.

This prior is discrete.  We will want to compare the
prior with the posterior distribution, and the graph of
two discrete distributions is easier to read if just the
tops of the vertical bars are plotted.  The resulting
plot of the prior looks like a continuous density, but it
still is intended to represent the above discrete
distribution.

The likelihood function is shown in Figure 6.25.  The
posterior distribution is proportional to the product of
the prior and the likelihood, normalized so that the
total probability equals 1.  Figure 6.27 shows the
prior and the posterior distributions on the same plot.

Note that the posterior follows the shape of the prior
very closely.  This is because the data are consistent
with the peak area of the prior, but are not yet strong
enough to appreciably reduce the uncertainty in the
prior — there are only eight demands.

What happens to this posterior as additional data
accumulate?  Suppose that ten times as much data
had been collected, 10 failures in 80 demands.  The
likelihood function, given by Equation 6.9 with this
new data set, is shown in Figure 6.28.

The posterior distribution is proportional to the
product of the prior and this new likelihood.  Figure
6.29 shows the prior and this new posterior.

Table 6.10 compares the results of the Bayesian
analyses with the original data and with ten times as
much data.
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Figure 6.29  Discrete prior and posterior distributions
for p, with 10 times as much data as in previous
figure.

Table 6.10 Comparison of Bayesian 
distributions.

Distribution 5th
%tile

mean 95th
%tile

Prior 0.04 0.206 0.54

Posterior, original
data

0.05 0.153 0.29

Posterior, ten times
more confirmatory
data

0.07 0.130 0.19

The difference between the two posterior distribu-
tions results from the differences between the two
likelihoods.  In this hypothetical example, both data
sets have the same MLE, 0.125, but the larger data
set has a likelihood that is more concentrated.  The
posterior distribution from the larger data set is
dominated by the likelihood, and closely resembles
it.

Readers are strongly encouraged to work through a few
examples like this on their own.  The calculations are
easy to carry out with a spreadsheet.

6.3.2.2 Estimation with a Conjugate Prior

We now consider the use of continuous prior distribu-
tions, beginning with a very convenient family of
distributions, the conjugate priors.

6.3.2.2.1   Definitions

By far the most convenient form for the prior distribu-
tion of p is a beta("prior, $prior) distribution.  The beta
distributions are the conjugate family for binomial data.
The properties of the beta distribution are therefore
summarized here, as well as in Appendix A.7.8.

If p has a beta(", $) distribution, the density is

 .f p p p( ) ( )
( )

( ) ( )
= −

+ − −Γ

Γ Γ

α β

α β
α β1 11

For most applications the gamma functions in the front
can be ignored — they only form a normalizing con-
stant, to ensure that the density integrates to 1.  The
important feature of the density is that 

f(p) % p" ! 1(1 ! p)$ ! 1 (6.11)

where the symbol % denotes “is proportional to.”  The
parameters of the distribution, " and $, must both be
positive.  The mean and variance of the distribution are

: = "/("+$), (6.12)

variance = 
αβ

α β α β( ) ( )+ + +2 1

= :(1!:)/("+$+1). (6.13)

The shape of the beta density depends on the size of the
two parameters.  If " < 1, the exponent of p is negative
in Equation 6.11, and therefore the density is un-
bounded as p 6 0.  Likewise, if $ < 1, the density is
unbounded as p 6 1.  If both " > 1 and $ > 1, the
density is roughly bell shaped, with a single mode.
Appendix A.7.8 shows graphs of some beta densities.
Equation 6.13 shows that as the sum " + $ becomes
large, the variance becomes small, and the distribution
becomes more tightly concentrated around the mean.

As will be seen below, if the prior distribution is a beta
distribution, so is the posterior distribution.  Therefore,
the above statements apply to both the prior and the
posterior distributions.

Appendix C tabulates selected percentiles of beta
distributions.  Also, the percentiles of a beta distribution
can be found by many software packages, including
some spreadsheets.  Also, the percentiles can be ob-
tained from algebraic formulas involving percentiles of
the F distribution, as explained in Appendix A.7.8.
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6.3.2.2.2    Update Formulas

The beta family is conjugate to binomial data.  That is,
updating a beta prior distribution with the data produces
a posterior distribution that is also a beta distribution.
This follows immediately from the derivation of the
posterior distribution.  By Bayes’ theorem (Appendix
B.5), the posterior distribution is related to the prior
distribution by

. (6.14)f p X x p f ppost prior( ) Pr( | ) ( )∝ =

This is the continuous analogue of Equation 6.10.  As
mentioned in the earlier sections, the probability of the
data is also called the “likelihood.”  It is given by
Equation 6.9.  Stripped of all the normalizing constants,
the beta p.d.f. is given by Equation 6.11.

Therefore, the beta distribution and the binomial
likelihood combine as:

f p p p p p

p p

x n x

x n x

post

  .

( ) ( ) ( )

( )

∝ − −

∝ −

− − −

+ − − + −

1 1

1

1 1

1 1

α β

α β

In the final expression, everything that does not involve
p has been absorbed into the proportionality constant.
This shows that the posterior distribution is of the form
beta("post, $post), with

"post = "prior + x 
$post = $prior + (n ! x)  .

The mean and variance of the prior and posterior
distributions are given by Equations 6.12 and 6.13,
using either the prior or posterior " and $.

These update formulas give intuitive meaning to the
beta parameters: "prior corresponds to a prior number of
failures and $prior to a prior number of successes.
Assuming a beta("prior , $prior ) distribution is equivalent
to having observed "prior failures and $prior successes
before the current data were observed.

6.3.2.3 Possible Conjugate Priors

A concentrated distribution (small variance, large value
of "prior + $prior) represents much presumed prior know-
ledge.  A diffuse prior (large variance, small value of
"prior + $prior) represents very little prior knowledge of p.

6.3.2.3.1 Informative Prior

The warning given in Section 6.2.2.5.1 applies here as
well: the prior distribution must be based on informa-

tion other than the data.  If possible, relevant informa-
tion from the industry should be used.

The calculations are now illustrated with Example
6.7, one failure to start in eight demands of the AFW
turbine train.  Poloski et al. (1998) examined nine
years of data from many plants, and found a
beta(4.2, 153.1) distribution for the probability of the
AFW train failure to start.

Application of the update formulas yields

"post = "prior + x = 4.2 + 1 = 5.2
$post = $prior + (n ! x) = 153.1 + (8 !1) = 160.1 .

The mean of this distribution is

5.2/(5.2 + 160.1) = 0.031,

and the variance is

0.031×(1 ! 0.031)/(5.2 + 160.1 + 1) = 1.89E!4,

and the standard deviation is the square root of the
variance, 0.014.  The 5th and 95th percentiles of the
posterior beta(", $) distribution are found from Table
C.5, except the tabulated $ values do not go above
100.  A footnote to that table gives an approximation
that is valid for $ >> ".  That formula applies, be-
cause 160.1 >> 5.2.  According to the formula the q
quantile is approximated by

P2
q(2×5.2)/[2×160.1 + P2

q(2×5.2)].

Therefore the 5th percentile of the beta distribution is
approximately

P2
0.05(10.4)/[320.2 + P2

0.05(10.4)] = 4.19/[320.2 + 4.19]
= 0.013,

and the 95th percentile is approximately

P2
0.95(10.4)/[320.2 + P2

0.95(10.4)] = 18.86/[320.2 +
18.86] = 0.056 .

All these quantities are unitless.

The prior density, posterior density, and posterior
c.d.f. of p are shown in Figures 6.30 through 6.32.

The posterior density is slightly to the right of the
prior density.  It is to the right because the data, one
failure in eight demands, show worse performance
than the industry history.  The posterior density is
only slightly different from the prior density because
the data set is small compared to the industry experi-
ence (eight demands in the data and an effective
157.3 demands for the industry).
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Figure 6.32  Posterior cumulative distribution of p.
The 5th and 95th percentiles are shown.
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Figure 6.33  Jeffreys noninformative prior distribution
for p.

Figure 6.30  Prior density for p, beta(4.2, 153.1).
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Figure 6.31  Posterior density for p, beta(5.2, 160.1).
The 5th and 95th percentiles are shown.

The 5th and 95th percentiles are shown for the
posterior distribution, both in the plot of the density
and in the plot of the cumulative distribution.

6.3.2.3.2 Noninformative Prior

The Jeffreys noninformative prior is beta(½ , ½); see
Box and Tiao (1973), Sections 1.3.4-1.3.5.  This
density is shown in Figure 6.33.  It is not the uniform
distribution, which is a beta(1, 1) distribution, but
instead rises sharply at the two ends of the interval
(0, 1).

Although the uniform distribution is sometimes used to
model no prior information, there are theoretical
reasons for preferring the Jeffreys noninformative prior.
These reasons are given by Box and Tiao, and are
suggested by the comparison with confidence intervals
presented below.  The uniform distribution would
correspond intuitively to having seen one failure in two
demands, which turns out to be too informative.  The
Jeffreys noninformative prior corresponds to having
seen one-half a failure in one demand.

The Bayes posterior distribution for p, based on the
Jeffreys noninformative prior, is beta(x + ½, n ! x + ½).
The mean of the distribution is (x + ½)/( n + 1).  Se-
lected percentiles are tabulated in Appendix C.

The posterior distribution given here is very similar to
the distributions used in the formulas for confidence
intervals in Section 6.3.1.3.  The only difference is in
the parameters.  The parameters here are averages of
the parameters used in the confidence intervals.  For
example, the first parameter for the lower confidence
limit is x, and the first parameter for the upper confi-
dence limit is x+1.  The Bayesian limits, on the other
hand, use the same parameters for the entire posterior
distribution, and the first parameter is x + ½, the aver-
age of the corresponding values for the confidence
limits.
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Figure 6.34  Comparison of four point estimates and
interval estimates for p.

In Example 6.7, failure to start of the turbine-driven
AFW train, the posterior distribution is beta(1.5, 7.5).
The posterior mean is 1.5/(1.5 + 7.5) = 0.17.  The
posterior 90% interval is (0.023, 0.40).  As is always
the case with discrete data, the confidence interval is
conservative, and so is wider than the Jeffreys
credible interval.  However, the two intervals are
similar to each other, being neither to the right nor
the left of the other.  Tabular and graphical compari-
sons are given later.

6.3.2.3.3 Constrained Noninformative Prior

This prior distribution is a compromise between an
informative prior and the Jeffreys noninformative prior.
As was the case in Section 6.2.2.5.3, the prior mean,
denoted here as p0, is based on prior belief, but the
dispersion is defined to correspond to little information.
The priors are described by Atwood (1996) and by
references given there.

For binomial data, the constrained noninformative prior
distribution is not as neat as for Poisson data.  The
exact constrained noninformative prior has the form

fprior(p) % ebpp!1/2(1 ! p)!1/2 , (6.15)

where b is a number whose value depends on the
assumed value of the mean, p0. The parameter b is
positive when p0 > 0.5 and is negative when p0 < 0.5.
Thus, in typical PRA analysis b is negative.  Atwood
(1996) gives a table of values, a portion of which is
reproduced in Appendix C as Table C.8.  The table
gives the parameter b of the distribution for selected
values of p0.  In addition, it gives a beta distribution that
has the same mean and variance as the constrained
noninformative prior.

The beta approximation is illustrated here, and the exact
constrained noninformative distribution is treated more
fully in the section below on nonconjugate priors.

Return again to Example 6.7, the AFW turbine train
failure to start.  Let us use the mean of the industry
prior found above,  4.2/157.3 = 0.0267.  However,
suppose that the full information for the industry prior
is not available, or that the system under consider-
ation is considered atypical so that the industry prior
is not fully relevant.  Therefore, the beta-approxima-
tion of the constrained noninformative prior will be
used.

Interpolation of Table C.8 at p0 = 0.0267 yields " =
0.4585.  Solving $ = "(1 ! p0)/p0 gives $ = 16.7138.
The resulting posterior distribution has parameters
1.4585 and 23.7138.  Interpolation of Table C.5 gives
a 90% interval of (0.0068, 0.15).

6.3.2.3.4 Example Comparison of Above Methods

Just as in Section 6.2, the following general statements
can be made:

• The Jeffreys noninformative prior results in a
posterior credible interval that is numerically
similar to a confidence interval.

• If the prior mean exists, the posterior mean is
between the prior mean and the MLE.

• If two prior distributions have about the same
mean, the more concentrated (less diffuse) prior
distribution will yield the more concentrated
posterior distribution, and will pull the posterior
mean closer to the prior mean.

Figure 6.34 and Table 6.11 summarize the results of
analyzing the AFW-failure-to-start data in the four
ways given above.

As in Section 6.2.2.5.4, the Jeffreys prior and the
frequentist approach are listed next to each other
because they give numerically similar results.  The
Jeffreys prior yields a posterior credible interval that
is strictly contained in the confidence interval, neither
to the right nor to the left.

In each Bayesian case, the posterior mean falls
between the prior mean and the MLE, 0.125.  The
prior distribution has more influence when the prior
distribution is more tightly concentrated around the
mean.  One measure of the concentration (at least
when the means are similar) is the sum "prior + $prior,
because it corresponds to the total number of prior
demands, and it is in the denominator of the variance
in Equation 6.13.  In the present example, when the
prior distributions in Table 6.11 are ordered by
increasing values of "prior + $prior, the order is the
noninformative prior, then the approximate con-
strained noninformative prior, and finally the industry
prior.  The three 90% intervals for the corresponding
posterior distributions have decreasing length in the
same order.
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Table 6.11   Comparison of estimates with one failure in eight demands.

Method Prior mean Posterior
parameters

Point estimate
(MLE or 
posterior mean)

90% interval (confidence
interval or posterior credi-
ble interval)

Frequentist NA NA 0.125 (0.0064, 0.47)

Bayes with Jeffreys
noninformative prior,
beta(0.5, 0.5)

0.5 " = 1.5
$ = 7.5

0.17 (0.022, 0.40)

Bayes with industry prior,
beta(4.2, 153.1)

0.027 " = 5.2
$ = 160.1

0.031 (0.013, 0.056)

Bayes with approx. con-
strained noninform. prior,
beta(0.4585, 16.7138)

0.027 " = 1.4585
$ = 23.7138

0.058 (0.0068, 0.15)

6.3.2.4 Estimation with a Continuous 
Nonconjugate Prior

Just as for 8, continuous nonconjugate priors for p
cannot be updated with simple algebra.  The resulting
posterior distribution does not have a simple form.
Therefore, to enter it as the distribution of a basic event
in a PRA code, a discrete approximation of the distribu-
tion must usually be used.

The posterior distribution must be obtained by numeri-
cal integration or by random sampling.  Three methods
are mentioned here, and the analyst may choose what-
ever seems easiest.

6.3.2.4.1 Direct Numerical Integration

To use numerical integration, use Equation 6.14 and
write the posterior distribution as the product of the
likelihood and the prior distribution:

Cfpost(p) = px(1 ! p)n ! xfprior(p) . (6.16)

Here C is a constant of proportionality.  All the normal-
izing constants in fprior and in the likelihood may be
absorbed into C, leaving only the parts that depend on
p on the right-hand side of the equation.  Integrate
Cfpost(p) from 0 to 1.  That is, integrate the right hand
side of Equation 6.16.  This integral equals C, because
the integral of fpost must equal 1.  Divide both sides of
Equation 6.16 by the just-found constant C, to obtain
the function fpost.  Use numerical integration to find the
moments and percentiles of this distribution.  Some
suggested methods of numerical integration are men-
tioned in Section 6.2.2.6.

6.3.2.4.2 Simple Random Sampling

To use random sampling, follow the rejection algorithm
given in Section 6.2.2.6.  The general algorithm, given
in Section 6.2.2.6, can be restated for binomial data as
follows.  Define

m = (x/n)x(1 ! x/n)n!x

if 0 < x < n.  If x = 0 or x = n, define m = 1.  The steps
of the algorithm are:

(1) Generate a random p from the prior distribution.
(2) Generate u from a uniform distribution, 0 # u # 1.
(3) If u # px(1 ! p)n!x/m, accept p in the sample.

Otherwise discard p.

Repeat Steps (1) through (3) until a sample of the
desired size is found.

6.3.2.4.3 More Complicated Random Sampling

All-purpose Bayesian update programs can be used for
the present simple problem, just as in Section 6.2.  The
powerful program BUGS is mentioned in Section
6.2.2.6.3, and described more fully in Sections 7.2.3
and 8.3.3.3.  It can be used here, although it is intended
for much more complicated problems.

6.3.2.5 Examples with Nonconjugate Priors

Several possible nonconjugate prior distributions are
discussed here.
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6.3.2.5.1 Lognormal Distribution  

The lognormal distribution is by far the most commonly
used nonconjugate distribution.  The parameter p has a
lognormal distribution if ln(p) is normally distributed
with some mean : and variance F2.

Facts about the lognormal distribution are given in
Appendix A.7.3.  One important fact is that the range of
the lognormal distribution is from 0 to 4.  Thus, the
distribution of p cannot be exactly lognormal, because
p cannot be greater than 1.  When using a lognormal
prior, one must immediately calculate the prior Pr(p >
1).  If this probability is very small, the error can be
neglected.  (When generating values p from the log-
normal distribution, either throw away any values
greater than 1 or set them equal to 1.  In either case,
such values hardly ever occur and do not affect the
analysis greatly.)  On the other hand, if the prior Pr(p >
1) is too large to be negligible, then the lognormal
distribution cannot possibly be used.  Even if the
software accepts the lognormal distribution, and hides
the problem by somehow handling the values that are
greater than 1, the actual distribution used is not
lognormal.  It is truncated lognormal, or lognormal with
a spike at 1, with a different mean and different percen-
tiles from the initially input lognormal distribution.  The
analyst’s two options are to recognize and account for
this, or to use a different prior distribution.

To use the above sampling algorithm with a lognormal
prior, p must be generated from a lognormal distribu-
tion.  The easiest way to do this is first to generate z
from a standard normal distribution, that is, a normal
distribution with mean = 0 and variance = 1.  Many
software packages offer this option.  Then, let y = : +
Fz, so that y has been generated from a normal(:, F2)
distribution.  Finally, let p = ey.  It follows that p has
been randomly generated from the specified lognormal
distribution.

6.3.2.5.2 Logistic-Normal Distribution

This distribution is explained in Appendix A.7.9.  The
parameter p has a logistic-normal distribution if
ln[p/(1 ! p)] is normally distributed with some mean :
and variance F2.  The function ln [p/(1 ! p)] is called
the logit function of p.  It is an analogue of the
logarithm function for quantities that must lie between
0 and 1.  Using this terminology, p has a logistic-normal
distribution if logit(p) is normally distributed.

Properties of the logistic-normal distribution are given
in Appendix A.7.9, and summarized here.  Let y =
ln[p/(1 ! p)].  Then p = ey / (1 + ey).  This is the inverse

of the logit function.  As p increases from 0 to 1, y
increases from !4 to +4.

Note, unlike a lognormally distributed p, a logistic-
normally distributed p must be between 0 and 1.
Therefore, the logistic-normal distribution could be
used routinely by those who like the lognormal distribu-
tion, but do not know what to do when the lognormal
distribution assigns p a value that is greater than 1.

The relation between p and y = logit(p)  gives a way to
quantify prior belief about p in terms of a logistic-
normal distribution.  First, decide on two values, such
as lower and upper plausible bounds on p or a median
and plausible upper bound, equate them to percentiles
of p, translate those percentiles to the corresponding
two percentiles of the normal random variable Y, and
finally, solve those two equations for : and F.

To generate a random value from a logistic-normal
distribution, first generate y from a normal (:, F2)
distribution, exactly as in the section above on the
lognormal distribution.  Then let p =  ey / (1 +  ey).  This
p has been randomly generated from the specified
logistic-normal distribution.

6.3.2.5.3 Exact Constrained Noninformative 
   Distribution

The prior distribution has the form of Equation 6.15,
and the posterior distribution is

fpost(p) = C1e
bppx ! 1/2(1 ! p)n ! x !1/2 ,

where C1 is a normalizing constant to make the density
integrate to 1.0.  Except for the normalizing constant,
this is ebp times a beta(x+½, n!x+½) distribution.
Numerical integration is straightforward, and will not
be explained here.  To generate a sample from the
posterior distribution, the rejection method algorithm
originally given in Section 6.2.2.6 takes the following
form.

Write the beta(x+½, n!x+½) density as

 fbeta(p) = C2p
x ! 1/2(1 ! p)n ! x !1/2 .

Typically, the desired mean of p is less than 0.5; if it is
not, reverse the roles of p and 1 ! p.  The algorithm
first defines M to be the maximum possible value of the
ratio fpost(p) / fbeta(p).  Because b < 0 in Table C.8, we
have ebp # 1, making M equal to C1/C2.  Therefore, the
condition in Step (3) of the algorithm reduces to 

 u # ebp .
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Therefore, the algorithm simplifies to the following:

(1) Generate a random p from the beta(x+½, n!x+½)
distribution.  Ways to do this are discussed below.

(2) Generate u from a uniform distribution, 0 # u # 1.
(3) If u # ebp, accept p in the sample.  Otherwise

discard p.

Repeat Steps (1) through (3) until a sample of the
desired size is found.

Not all standard software packages give the option of
generating random numbers from a beta distribution,
although many more allow random number generation
from a gamma distribution or from a chi squared
distribution.  When working with such software, let y1

be randomly generated from a gamma(x+½, 1) distribu-
tion and let y2 be randomly generated from a
gamma(n!x+½, 1) distribution.  Alternatively, let y1 be
randomly generated from a chi-squared(2x+1) distribu-
tion and let y2 be randomly generated from a chi-
squared(2n!2x+1) distribution.  In either case, define p
= y1/(y1+y2).  Then, p has been generated from the
specified beta(x+½, n!x+½) distribution.  (See Chapter
25 of Johnson et al. 1995.)

6.3.2.5.4 Maximum Entropy Prior

The maximum entropy prior and the constrained nonin-
formative prior were developed with the same goal:  to
produce a diffuse distribution with a specified plausible
mean.  The diffuseness of the maximum entropy distri-
bution is obtained by maximizing the entropy, defined
as 

.− = − ∫E f p f p f p dp[ln ( )] [ln ( )] ( )

When p is restricted to the range from 0 to 1, it can be
shown that the density f maximizing the entropy is
uniform,

 f(p) = 1     for 0 # p # 1

and f(p) = 0 elsewhere.  More interesting is the case
when the mean of the distribution is required to equal
some prespecified value p0.  In this case the maximum
entropy distribution has the form of a truncated expo-
nential distribution,

 f(p) = Cebp     for 0 # p # 1

and f(p) = 0 elsewhere.  In this form, b is negative when
p0 < 0.5 and b is positive when p0 > 0.5.  The value of
b corresponding to a particular mean must be found by
numerical iteration.  Some authors write e!bp instead of
ebp; this simply reverses the sign of the parameter b.

The maximum entropy distribution and the uniform
distribution are related — if the constraint on the mean
is removed, the maximum entropy distribution equals
the uniform distribution.  In this sense, the maximum
entropy distribution is a generalization of the uniform
distribution.  The constrained noninformative distribu-
tion is the same sort of generalization of the Jeffreys
noninformative distribution — if the constraint is
removed, the constrained noninformative prior becomes
the Jeffreys noninformative prior.  Atwood (1996)
reviews the reasons why the Jeffreys prior is superior to
the uniform prior, and uses the same reasoning to argue
that the constrained noninformative prior is superior to
the maximum entropy prior.

In practice, it may make little difference which distribu-
tion is used.  Both distributions are intended to be used
when little prior knowledge is available, and quantify-
ing “little prior knowledge” is not something that can be
done precisely.

Sampling from the posterior distribution is similar to
the other sampling procedures given above, so most of
the details are not given.  The only point deserving
discussion is how to generate a random sample from the
maximum entropy prior.  The most convenient method
is the inverse c.d.f. algorithm.  This algorithm is
simple in cases when the c.d.f. and its inverse can be
calculated easily.

For example, let the random variable P have c.d.f. F.
Let F!1 be the inverse function, defined by u = F(p) if
and only if p = F!1(u).  Let U be defined as F(P).  What
is the distribution of U?  The c.d.f. of U is found by

Pr(U # u) = Pr[ F(P) # u ]
= Pr[ P # F!1(u) ]
= F[ F!1(u) ]    because F is the c.d.f. of P
= u .

Therefore, U has a uniform distribution.  The letter U
was not chosen by accident, but in anticipation of the
uniform distribution.

To generate a random value p from the distribution F,
generate a random u from the uniform (0, 1) distribu-
tion, something that many software packages allow.
Then define p = F!1(u).  This is the inverse c.d.f.
method of random number generation.

To apply this to the maximum entropy distribution, first
integrate the maximum entropy density to yield the
c.d.f.

F(p) = (1 ! ebp)/(1 ! eb) .



Parameter Estimation and Model Validation

6-42

0

10

20

30

40

50

60

70

0.00 0.05 0.10

Prior
Posterior

0.15 0.20
p (failures/demand) GC99 0292 19

D
en

si
ty

Figure 6.35  Lognormal prior density and posterior 
density for p.

Generate u from a uniform(0, 1) distribution, and set

u = (1 ! ebp)/(1 ! eb) .

Solve this equation for p,

p = !ln[ 1 ! (1 ! eb)u ]/b .

Then, p has been randomly generated from the maxi-
mum entropy distribution.  Repeat this with new values
of u until enough values of p have been obtained.

6.3.2.5.5    Example Calculation

These techniques will be illustrated with the
Example 6.7, one failure to start in eight demands of
the AFW turbine train.  Two prior distributions will be
assumed, the lognormal prior used by the Accident
Sequence Evaluation Program (ASEP), as presented
by Drouin et al. (1987), and a logistic-normal distribu-
tion having the same 50th and 95th percentiles.

The ASEP distribution for turbine-driven pump failure
to start is lognormal with mean 3E!2 per demand
and error factor 10.  The three relevant equations
from Appendix A.7.3 are

EF(p) = exp(1.645F)
mean(p) = exp(: + F2/2)
pq = exp(: + Fzq)

where the subscript q denotes the qth quantile, and
zq is the qth quantile of the standard normal distribu-
tion.

Solving the first equation yields F = 1.3997.  Substi-
tution of this into the second equation yields : =
!4.4862.

The percentiles are not needed yet, but the third
equation gives the median, p0.50 = exp(:) = 0.01126,
and the 95th percentile, p0.95 = exp(: + 1.645F) =
0.1126.  (The relation of these two percentiles can
also be derived from the fact that the error factor
equals 10.)

The prior Pr(p > 1) is 6.75E!4, a very small number.
In the calculations of this section, the lognormal
distribution is truncated at 1.0.  That is, integrals are
renormalized to make the integral of the density from
0 to 1 equal to exactly 1.0.  If random sampling is
performed, any sampled values that are greater than
1 are discarded. 

The prior and posterior densities of p are shown in
Figure 6.35.  The densities were calculated using
software for numerical integration.

As a second example, consider the logistic-normal
prior distribution having the same 50th and 95th
percentiles as the above lognormal prior.  These
percentiles are 0.01126 and 0.1126.  To find the
parameters of the underlying normal distribution, set
Y = ln[p/(1 ! p)].  By the properties of the logistic-
normal distribution given in Appendix A.7.9, the 50th
and 95th percentiles of Y are

y0.50 = ln[0.01126/(1 ! 0.01126)] = !4.475
y0.95 = ln[0.1126/(1 ! 0.1126)] = !2.064 .

Because Y has a normal(:, F2) distribution, it follows
that

: = !4.475
: + 1.645F = !2.064

so F = 1.466 .

Monte Carlo simulation shows that the truncated-
lognormal and logistic-normal prior densities are
virtually the same, with means, medians, 5th and
95th percentiles agreeing to two significant digits.  As
a consequence, the posterior distributions from the
two priors are also nearly the same, although the
means and  percentiles may differ slightly in the
second significant digit.

Numerical integration was used, but BUGS could
have been used.  As an illustration, the script for
using BUGS is given in Figure 6.36.

This script assigns a logistic-normal prior distribution
to p.  If a lognormal prior is used instead, BUGS
returns an error message during the simulation,
presumably because it has generated a value of p
greater than 1.  The script assigns Y a normal distri-
bution with mean !4.475.  The second parameter is
1/F2, because that is how BUGS parameterizes a
normal distribution.  The entered value, 0.4653,
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model
{
   y ~ dnorm(-4.475, 0.4653)
   p <- exp(y)/( 1 + exp(y))
   x ~ dbin(p, 8)
}
list(x = 1)

Figure 6.36  Script for analyzing Example 6.7 with
BUGS.

equals 1/1.4662.  The script then gives X a bino-
mial(8, p) distribution.  Finally, the line beginning “list”
contains the data, the single observed value 1 in this
example.  BUGS also wants an initial value for  p, but
it is willing to generate it randomly.

For the present example, the difference between the
lognormal and logistic-normal priors is very small,
having no effect on the posterior. The difference
between the two priors can be important if the probabil-
ity of failure is larger and/or the uncertainty is larger.
That can be the case with some human errors, with
hardware failures in unusually stressful situations, and
with recovery from failure if recovery is modeled as an
event separate from the original failure.  For example,
the NUREG 1150 PRA for Surry (Bertucio and Julius
1990) uses the lognormal distribution for most failure
probabilities.  However, some failure probabilities are
large, considerably larger than 3E!2.  In nearly all of
those cases, the PRA does not use a lognormal distribu-
tion.  Instead, the maximum entropy distribution is the
PRA’s distribution of choice.  Other possible distribu-
tions, which were not widely known in the PRA com-
munity in 1990, would be the constrained noninforma-
tive distribution or a logistic-normal distribution.

6.3.2.6 Estimation with Fixed Number of Failures
and Random Number of Demands

Sometimes it is useful to consider a random number of
demands, a waiting time, to achieve a fixed number of
failures x.  For example, if the failure probability p is
believed to change over time, only the most recent
history may represent current behavior.  In such a
situation, one might decide to use only the most recent
few failures, such as x = 3, and to treat the correspond-
ing number of demands n as random.  Here n is the
number of demands counted backwards from the
present to the xth failure in the past.  Earlier failures and
demands could be used to construct a prior distribution,
but the dispersion of the prior distribution should be set

large because the earlier events are not considered fully
relevant to the present.

With such waiting-time data, the likelihood is propor-
tional to 

 px(1 ! p)n ! x .

Therefore, except for the normalizing constant the
likelihood is the same as for binomial data.  Therefore,
it works out that Bayesian analysis with an informative
prior is exactly the same whether the data are regarded
as coming from a random count of x failures in a fixed
number of demands, n, or a random number of de-
mands, n, for a fixed number of failures, x.  The poste-
rior distributions are identical.

6.3.3 Model Validation

All the methods in this section are analogues of meth-
ods considered for failure rates, but the details are
somewhat different. Some repetition is inevitable, but
the examples in this section are chosen to complement
the examples of Section 6.2.3, not to duplicate them.
For a more complete appreciation of the model valida-
tion techniques, both this section and Section 6.2.3
should be read.

The comments at the start of Section 6.2.3 apply
equally to this section, and must not be ignored.  In
particular, an analyst who estimates parameters should
check the assumptions of the model.  However, this
section contains more than will be needed on any one
analysis.  The methods here are offered for possible
use, and the analyst should select the appropriate ones.

The first assumption of the binomial model, given in
Section 2.3.2, is that the probability of failure is the
same on any demand.  This assumption will be exam-
ined against two possible alternative assumptions: (1)
different subsets of the data have different values of p,
but in no special order; and (2) a time trend exists.  The
second assumption of the binomial model is that the
outcome on one demand is statistically independent of
the outcome on a different demand.  This will be
examined against the alternatives of common-cause
failures and of clustering in time of the failures.  Fi-
nally, the consistency of the prior distribution and the
data will be considered.

One need not worry about whether n is really constant.
If n is not constant, we may treat it as constant by
conditioning on n, as explained in Section 2.3.2.4.2.
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Figure 6.37  MLEs and 90% confidence intervals for
p, for three types of demand and for the pooled data.

6.3.3.1 Poolability of Data Sources

The methods will be illustrated by data from diesel
generator failures to start, shown in Example 6.8.

Example 6.8 EDG failures to start on demand.

Emergency diesel generator (EDG) failures to
start on demand were recorded for three kinds of
demands:  unplanned demands, the tests per-
formed once per operating cycle (approximately
every 18 months), and the monthly tests.  The
counts are given below.

Type of
demand

Failures to
start

Number of
demands

Unplanned   2     181

Cyclic test 17   1364

Monthly test 56 15000

Table C.1 of Grant et al. (1996) gives the data for the
first two rows, at plants reporting under Regulatory
Guide RG-1.108 during 1987-1993.  The failures
were those reported in LERs.  The number of failures
on monthly tests at those plants comes from the
unpublished database used for that report, and the
number of monthly demands was estimated in a very
crude way for use in this example.

6.3.3.1.1 Graphical Technique

To explore the relations between subsets of the data,
mark the subsets on one axis.  For each of these subsets
of the data, plot an estimate of p and a confidence
interval for p against the other axis.  Patterns such as
trends, outliers, or large scatter are then visible.

In Example 6.8, the subsets are types of demand.
The data set from each demand type is analyzed
separately, and the graph shows an estimate and a
confidence interval for each year, plotted side by
side.  This is shown in Figure 6.37.  The plot was
produced with a graphics package, although a hand-
drawn plot would be adequate to show the results.

The plot shows that the unplanned demands and the
cyclic tests appear to have similar values of p, but
the monthly tests appear to have a lower value.
Several reasons for the difference could be conjec-
tured: the monthly tests may be less stressful, the
failures may not all be reported in LERs, or the
estimated number of demands may be badly incor-
rect.

Figure 6.21, which is the corresponding plot in Section
6.2.3.1.1, has the cells (plants, in that example) ar-

ranged in order of decreasing .  Figure 6.37 does not$λ
order the cells by decreasing , because the number of$p
cells is small, only three, and because the cells already
have a natural order.  The analyst must decide what
order makes the most sense and is easiest for the user to
interpret.

The interval for the pooled data is also shown, not
because the data justify pooling, but simply as a refer-
ence for comparison.  A dotted reference line is drawn
through the point estimate based on the pooled data.  If
only a few data subsets need to be compared, as in
Figure 6.37, these embellishments are unnecessary.
With many subsets, however, the eye tends to get lost
without the reference line.  The reference line has the
added advantage of focusing the eye on the confidence
intervals rather than the point estimates.

The graph is only a picture.  Pictures like these are
useful, but cannot always be used in an easy way to
draw conclusions about differences between data
subsets.  The warnings given in Section 6.2.3.1.1
deserve repetition:

C If many confidence intervals are plotted, all
based on data with the same p, a few will be far
from the others because of randomness alone.
An outlying interval does not prove that the ps
are unequal.

C This same statement is true if other intervals are
used, such as Bayes credible intervals based on
the noninformative prior.  The issue is the ran-
dom variability of data, not the kind of interval
constructed. 

C If there are few intervals, on the other hand,
intervals that just barely overlap can give strong
evidence for a difference in the ps.
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To quantify the strength of the evidence seen in the
picture, a formal statistical procedure is given in the
next subsection.  The picture gives a preview, and helps
in the interpretation of the formal statistical quantifica
tion.  In the present example, if the statistical test finds
a statistically significant difference between data
subsets, it is natural to then ask what kind of difference
exists.  The picture shows that p seems to be similar for
the unplanned demands and for the cyclic tests, but
smaller for the monthly tests.  In this way, the picture
provides insight, even though it does not provide a
quantitative statistical test.

6.3.3.1.2 Statistical Tests

Simple Contingency Tables (2 × J).  The natural
format for the data is a “contingency table.”  An intro-
ductory reference to this subject is Everitt (1992), and
many general statistics texts also have a chapter on the
topic.  In a two-way table, two attributes of the events
are used to define rows and columns, and the numbers
in the table are counts.  In the present example, two
attributes of any event are the type of demand and
whether it is a failure or success.  One way to build a
contingency table is to let the first row show system
failures and the second row system successes.  Then let
the columns correspond to the demand types.  (Of
course, the roles of rows and columns can be reversed
if that fits better on the sheet of paper.)  The table
entries are the counts of the events for each cell, shown
in Table 6.12 for Example 6.8. 

Table 6.12   Contingency table for Example 6.8.

Unplanned Cyclic Monthly Total

Failure 2 17 56 75

Success 179 1347 14944 16470

Total 181 1364 15000 16545

The essence of this table is a 2 × 3 table, because the
basic data counts occupy two rows and three columns.

The row totals, column totals, and grand total are shown
in the right and bottom margins.  A general, two-way
contingency table has I rows and J columns.  (Although
this discussion considers only 2 × J tables, it does no
harm to give the general formulas, keeping in mind that
the examples of this section have I = 2.)  The count in
the ith row and jth column is denoted nij, for i any
number from 1 to I and j from 1 to J.  The total count in

row i is denoted ni+ and the total count in column j is
denoted n+j.  The grand total is denoted n++.

For example, Table 6.12 has n1,3 = 56 and n2,1 = 179.
It has n2+ = 16470 and n+2 = 1364.  The grand total,
n++, equals 16545 in the example.

Let the null hypothesis be

H0: p is the same for all the data subsets.

The alternative hypothesis is

H1: p is not the same for all the data subsets.

In the example, the data subsets are the three demand
types.  The analyst must investigate whether H0 is true.
The method used is to see what kind of data would be
expected when p really is the same, and then to see how
much the observed counts differ from the expected.  If
the differences are small, the counts are consistent with
the hypothesis H0.  If, instead, the differences are large,
the counts show strong evidence against H0.

If H0 is true, that is, if p is really the same for all the
demand types, the natural estimate of p is

.$ /p n n= + + +1

Then for column j, one would have expected n pj+ $

failures on average.  This reasoning leads to the formula
for the expected count in cell ij:

eij = ni+n+j / n++.

In Table 6.12, for unplanned demands one would
have expected 181×(75/16545) = 0.82 failures on
average, for cyclic tests 1364×(75/16545) = 6.19
failures, and so forth.

The difference between the observed count and the
expected count for any cell is nij ! eij.  There are many
cells, and therefore many ways of combining the
differences to yield an overall number.  One useful way
is to construct

X2 = EiEj (nij ! eij)
2/eij.

X2 is called the chi-squared statistic, or sometimes the
Pearson chi-squared statistic.  Note, X2 as defined here
is slightly different from the chi-squared statistic for
constant event rate in Section 6.2.3.1.2.  In that section,
the cells had one index, whereas in this section, the cells
have two indices, and the expected counts are calcu-
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lated differently.  Other than that, the statistics are the
same.  Table 6.13 expands Table 6.12 to show the
quantities needed to calculate X2.  The observed counts
and the expected counts have the same totals, except for
roundoff.

Table 6.13 Counts, expected counts, and 
contributions to X2, for Example 6.8.

Unplanned Cyclic Monthly Total

Failure 2
0.82
1.70

17
6.19

18.92

56
68.00
2.12

75

Success 179
180.18

0.01

1347
1357.80

0.09

14944
14932

0.01

16470

Total 181 1364 15000 16545

For example, there were 2 failures on unplanned
demands.  The expected number of failures on un-
planned demands, if H0 is true, is 181×75/16545 =
0.82.  And the contribution of that cell to X2 is
(2 ! 0.82)2/0.82 = 1.70 .

When H0 is true and the total count is large, the distri-
bution of X2 has a distribution that is approximately chi-
squared with (I-1)×(J-1) degrees of freedom.  In Table
6.12, the number of degrees of freedom is (2!1)×(3!1)
= 2.  If X2 is large compared to the chi-squared distribu-
tion, the evidence is strong that H0 is false; the larger
X2, the stronger the evidence.

Interpretation of Test Results.  Based on any 2×3
contingency table, such as Table 6.12, suppose that X2

were 6.4.  A table of the chi-squared distribution shows
that 5.991 is the 95th percentile of the chi-squared
distribution with 2 degrees of freedom, and 7.378 is the
97.5th percentile.  After comparing X2 to these values,
an analyst would conclude that the evidence is strong
against H0, but not overwhelming.  Quantitatively, the
analyst would “reject H0 at the 5% significance level,
but not at the 2.5% significance level.”  This is some-
times phrased as “the p-value is between 0.05 and
0.025.”  See the bulleted list in Section 6.2.3.1.2, in the
interpretation following Table 6.6, for other phrases
that are sometimes used.

If instead X2 were 1.5, it would lie between the 50th and
the 60th percentiles of the chi-squared distribution, and
therefore would be in the range of values that would be
expected under H0.  The analyst could say “the ob-
served counts are consistent with the hypothesis H0,” or

“H0 cannot be rejected,” or “the evidence against H0 is
very weak.”  The analyst would not conclude that H0 is
true, because it probably is not exactly true to the tenth
decimal place, but would conclude that it cannot be
rejected by the data.

In fact, in Example 6.8 X2 equals 22.8, as found by
totaling the six contributions in Table 6.13.  This
number is far beyond the 99.5th percentile of the chi-
squared distribution, so the evidence is overwhelm-
ing against H0.  Such an analysis contributed to the
decision of Grant et al. (1999b) not to consider
monthly tests in their report.

This example was chosen to illustrate that subsets of the
data can correspond not only to different locations or
different hardware (for example, different plants or
systems), but also to different conditions, in this case
different types of demands.  In reality, the data analyst
should consider various kinds of subsets; in this exam-
ple, with data coming from many plants, the analyst
should consider possible between-plant differences.
The plots and chi-squared tests are exactly the same as
given above.

This brings up a difficulty with the present example that
has been carefully hidden until now.  The hypothesis H0

is that all the subsets of the data have the same p.  A
hidden hypothesis, never even proposed for testing, is
that within each data subset, every demand has the same
p.  In fact, this turns out not to be the case.  Based on
only the unplanned demands and cyclic tests, Grant et
al. (1999b) report that the difference between plants is
statistically significant — the evidence is strong that p
differs from plant to plant.  This means that the above
analysis must be refined to account for possible differ-
ences between plants.  Such variation is discussed in
Chapter 8 of this handbook.

Thus, the data set has two sources of variation, differ-
ences between demand types and also differences
between plants.  In such a situation, consideration of
only one variable at a time can throw off the results if
the data set is “unbalanced,” for example, if the worst
few plants also happen to have the most unplanned
demands and the fewest monthly demands.  If such
between-plant differences are contaminating the EDG
data in Example 6.8, the observed difference might not
reflect anything about the nature of the demands, but
only that the plants with EDG problems were
underrepresented on the monthly tests.  Example 6.9
shows hypothetical data under such a scenario. 

If only the good plants are considered, or if only the
bad plants are considered, the data of Example 6.9
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show no difference between unplanned demands
and tests.  The estimated p is the same for un-
planned demands and for tests, 0.2 from the bad
plants’ data and 0.02 from the good plants’ data.
However, if the data from good plants and bad plants
are combined, the unplanned demands appear to
have a much higher failure probability than do the
tests, 0.07 versus 0.03.  This erroneous conclusion
is a result of ignoring differences in the data, the
existence of two kinds of plants, when the data are
unbalanced because the bad plants have a much
higher percentage of unplanned demands.  Such a
situation is known as Simpson’s paradox.

Example 6.9 Hypothetical unbalanced data.

Suppose that the industry consists of “bad” plants
and “good” plants.  The bad plants have a
relatively high probability of failure to start, and
also have relatively many unplanned demands.
Suppose that the tests perfectly mimic unplanned
demands, so that at either kind of plant p is the
same on an unplanned demand and on a test.
Data from such an industry might be given in the
table below.  The tables entries show failures/
demands.

Unplanned Tests

Bad plants 4/20 = 0.2 4/20 = 0.2

Good plants 1/50 = 0.02 8/400 = 0.02

Totals 5/70 = 0.07 12/420 = 0.03

In fact, this scenario cannot be greatly influencing
the data in Example 6.8, because most of the de-
mands are periodic.  Therefore, every plant must
have approximately the same fraction of monthly
tests and of cyclic tests.  In conclusion, although
between-plant variation must be considered, it is
hard to imagine that it affects the outcome in Exam-
ple 6.8.

As mentioned in Section 6.2.3.1.2, a full data analysis
must not stop with the calculation of a p-value.  In the
present example, with a very large number of demands,
it may be that the statistically significant difference is
not very important from an engineering viewpoint.  In
other words, a large data set can detect differences in
the second decimal place — differences that are not
worth worrying about in practice.  

This concern is addressed in the example by Figure
6.37, which shows that the probability of FTS is

about 1/3 as large on monthly tests as on other
demands, at least according to the reported data.
Therefore, the difference is substantial in engineer-
ing terms, and the engineering portion of the data
analysis can investigate reasons for the difference.

Required Sample Size.  The above approach is valid
if the values of nij are “large.”  If they are small, X2 has
a discrete distribution, and so cannot have a chi-squared
distribution.  As a rather extreme example, if n++, the
total number of demands, were equal to four in the
framework of Example 6.8, there would only be a few
ways that the four demands (and the number of failures,
at least zero and at most four) could be arranged among
the three demand types.  Therefore X2 could only take
a few possible values.

Therefore, the user must ask how large a count is
necessary for the chi-squared approximation to be
adequate.  An overly conservative rule is that all the
expected cell counts, eij, be 5.0 or larger.  Despite its
conservatism, this rule is still widely used, and cited in
the outputs of some current statistics packages.  For a
2×J table, Everitt (1992, Sec. 3.3), citing work by
Lewontin and Felsenstein (1965), states that the chi-
squared approximation is adequate if all the values of eij

are 1.0 or greater, and that in “the majority of cases” it
is sufficient for the eij values to be 0.5 or greater.  For a
2×2 table, however, it is generally best not to use the
chi-squared approximation at all, but to use the p-value
from “Fisher’s exact two-sided test,” discussed below.

If the expected cell counts are so small that the chi-
squared approximation appears untrustworthy, the
analyst has two choices:  (a) Pool some columns,
thereby combining cells and increasing the expected
cell counts.  For example, in an investigation of differ-
ences between years, with few failures, it might be
necessary to combine adjacent years so that the ex-
pected number of failures in each time-bin is at least
0.5; or (b) Some statistical software packages can
compute the “exact distribution” of X2 in some cases
(typically for small tables).  Conditional on the ni+

values and n+j values, this exact distribution is the finite
set of values that X2 can possibly take, together with
their associated probabilities.  If the analyst is willing to
base the decision on this conditional distribution, the
exact distribution can be used.  The commercial pack-
age StatXact performs such calculations using modern,
fast algorithms, even for large tables, subject only to the
memory available in the machine.  In the special case of
a 2×2 contingency table, many software packages
compute this p-value, calling it the p-value from
“Fisher’s exact two-sided test.”  In general, the p-value
from Fisher’s exact test is preferable to the p-value
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Figure 6.39  Cumulative number of failures versus
cumulative number of demands.

from the chi-squared approximation, and should be
used whenever the software produces it.  This, and
other considerations for a 2×2 table, are discussed by
Everitt (1992) and Atwood (1994).

In Table 6.13, the smallest expected count is e11 =
0.82.  All the other expected counts are larger than
1.0.  This indicates that the sample size is large
enough. 

6.3.3.2 No Time Trend

This section uses the unplanned HPCI demands from
Example 6.5, with the failures indicated.  To make a
data set with a moderate number of failures, all types of
failures are counted together, including failure to start,
failure to run, failure of the injection valve to reopen
after operating successfully earlier in the mission, and
unavailability because of maintenance.  For the exam-
ple, no credit is taken for failures that were recovered.
The data are given as Example 6.10.

Example 6.10 Dates of HPCI failures and 
unplanned demands, 1987-1993.

The HPCI demands of Example 6.5 are listed here
with an asterisk marking demands on which some
kind of failure occurred.  The demands dates are
given in columns, in format MM/DD/YY.

01/05/87*
01/07/87
01/26/87
02/18/87
02/24/87
03/11/87*
04/03/87
04/16/87
04/22/87
07/23/87
07/26/87
07/30/87
08/03/87*

08/03/87*
08/16/87
08/29/87
01/10/88
04/30/88
05/27/88
08/05/88
08/25/88
08/26/88
09/04/88*
11/01/88
11/16/88*
12/17/88

03/05/89
03/25/89
08/26/89
09/03/89
11/05/89*
11/25/89
12/20/89
01/12/90*
01/28/90
03/19/90*
03/19/90
06/20/90
07/27/90

08/16/90*
08/19/90
09/02/90
09/27/90
10/12/90
10/17/90
11/26/90
01/18/91*
01/25/91
02/27/91
04/23/91
07/18/91*
07/31/91

08/25/91
09/11/91
12/17/91
02/02/92
06/25/92
08/27/92
09/30/92
10/15/92
11/18/92
04/20/93
07/30/93

6.3.3.2.1 Graphical Techniques

Just as elsewhere in this chapter, the time axis can be
divided into bins, and the data can be analyzed sepa-
rately for each bin and compared graphically.

For Example 6.10, defining the bins to be years
leads to Table 6.14.  This leads to a plot similar to
Figures 6.21 and  6.22, shown in Figure 6.38.  The
plot with the example data shows no evidence of a
trend.

Table 6.14 HPCI failures on demand, by year.

Calendar year Failures Demands

1987 4 16

1988 2 10

1989 1   7

1990 3 13

1991 2   9

1992 0   6

1993 0   2

Figure 6.38  Point and interval estimates of p, each
based on one year’s data.

A plot that does not require a choice of how to con-
struct bins is given in Figure 6.39, the analogue of
Figure 6.23.  It can be constructed when the demands
can be ordered sequentially, as is the case for Example
6.10.  In this plot, the cumulative number of failures is
plotted against the cumulative number of demands.  To
help the eye judge curvature, a straight line is drawn,
connecting the origin with the dot at the upper right.



Parameter Estimation and Model Validation

6-49

The slope of any part of the graph is the vertical dis-
tance divided by the horizontal distance, )y/)x.  In the
present figure the horizontal distance is the number of
demands that have occurred, and the vertical distance is
the corresponding number of failures.  Therefore,

slope = (number of failures)/(number of demands) ,

so the slope is a visual estimator of p.  A roughly
constant slope, that is, a roughly straight line, indicates
a constant p.  A changing slope indicates changes in p.

In Figure 6.39, the slope is relatively constant,
indicating that p does not seem to change with time.
This agrees with Figure 6.38.  It is not clear whether
the slight departure from the diagonal line in the right
half of the figure is more than can be attributed to
random variation.  Such questions must be ad-
dressed by statistical tests, given below.

The details of the diagonal line probably do not matter.
The line shown is the maximum likelihood estimate of
the expected height of the plot at any horizontal point,
assuming constant p.  Other lines, slightly different,
could also be justified.

6.3.3.2.2 Statistical Tests for a Trend in p

In this section, the null hypothesis remains

H0: p is the same for all the data subsets.

but the alternative is now

H1: p is either increasing or decreasing over time .

The Chi-Squared Test.  This is the same test as given
in Section 6.3.3.1.2, except now the data subsets are
years or similar bins of time.

The data of Table 6.14 can be written as a 2×7
contingency table.  The smallest expected cell count
corresponds to failures in 1993, with the expected
count = 2×12/63 = 0.4.  This is too small to justify
calculating a p-value from the chi-squared distribu-
tion.  The problem can be remedied by pooling the
two adjacent years with the smallest number of
demands, 1992 and 1993.  (Note, the decision of
which subsets to pool is based on the numbers of
demands only, not on whether or not those demands
resulted in failures.  Pooling based on demand
counts is legitimate.  Pooling based on the failure
counts is not.)

When this 2 × 6 contingency is analyzed by the chi-
squared test, the p-value is 0.77, indicating no

evidence at all of differences between years.  This is
no surprise.

The Wilcoxon-Mann-Whitney Test.  This test is
similar in spirit to the Laplace test for a trend in 8.  The
null hypothesis is that p is the same for all demands.
Suppose that the individual demands are in a known
sequence.  Against the alternative hypothesis that the
failures tend to occur more at one end of the sequence
— that is, p is either an increasing or a decreasing
function of the sequence number —  use the Wilcoxon-
Mann-Whitney test, described in texts that cover
nonparametric statistics.  Two good sources of standard
nonparametric methods are Conover (1999), and
Hollander and Wolfe (1999).  Hollander and Wolfe call
this test the Wilcoxon rank sum test.

The test is based on the sum of the ranks of the failures.
For example, in the sequence of failures and successes

failure, success, failure, failure, success,

the three failures have ranks 1, 3, and 4, and the sum of
their ranks is 8.  Let W denote the sum of the ranks of x
failures in n trials.  If x and n ! x are both large and if
the probability of a failure is the same for the entire
sequence, W is approximately normal with mean :W =
x(n+1)/2 and variance F2

W = x(n!x)(n+1)/12.  If Z = (W
! :W)/FW is in either tail of the distribution, the null
hypothesis should be rejected.  If x or n ! x  is small,
statistics books give tables, or statistical computer
packages calculate the exact tail probability.

The data of Example 6.10 show 12 failures in 63
demands.  The first failure was on the first demand
(01/05/87), so that failure has rank 1.  The next was
on the sixth demand, so that failure has rank 6.  Two
demands occurred on 03/19/90, the 36th and 37th
demands.  One of the two demands resulted in
failure, so that failure was assigned rank 36.5, as is
usual in case of ties.  The sum of the ranks of the
failures is 321.5, and Z can be calculated to equal
!1.09.  This is the 13.8th percentile of the normal
distribution.  Because Z is not in either tail, H0 is not
rejected.

6.3.3.3 Independence of Outcomes

The second assumption for binomial data is that the
outcomes of different demands be independent — a
success or failure on one demand does not influence the
probability of failure on a subsequent demand.

Outcomes can be dependent in many ways, and some of
them must be addressed by careful thinking rather than
by statistical data analysis.  The analyst or the study



Parameter Estimation and Model Validation

6-50

team should consider possible common-cause mecha-
nisms, and examine the data to see if many common-
cause failures occurred.  If common-cause failures form
a noticeable fraction of all the failures, the analyst
should probably divide the independent failures and the
common-cause failures into separate data sets, and
separately estimate the probabilities of each kind of
failure.

The rest of this section is less important on the first
reading than other sections.  Some readers may wish to
skip directly to Section 6.3.3.4.

If demands occur in sequence, it is natural to consider
serial dependence, in which the occurrence of a failure
on one demand influences the probability of a failure on
the next demand.  Some people believe that hits in
baseball occur this way, that a slump or streak can
persist because of a batter’s attitude, which is influ-
enced by how successful he has been recently.  In the
context of hardware failures, suppose that failures are
sometimes diagnosed incorrectly, and therefore repaired
incorrectly.  Immediately after any failure, the probabil-
ity of failure on the next demand is higher, because the
first failure cause may not have been truly corrected.  In
such a case, the failures would tend to cluster, rather
than being uniformly scattered among the successes.  A
cumulative plot, such as that in Figure 6.39, can be
inspected for such clusters.

If the question of independence is restricted to succes-
sive outcomes — outcome i!1 versus outcome i — the
data can be analyzed by a 2×2 contingency table.  Let
yi be the outcome on demand i, either success or failure.
Let xi be the outcome on demand i ! 1.  The possible
values of successive outcomes (xi, yi) are (S, S), (S, F),
(F, S), and (F, F).

To put this in more familiar language, let p denote the
probability of a failure, and consider two kinds of
demands, those when the previous outcome (x) was a
failure and those when the previous outcome was a
success.  The null hypothesis is

H0: p is the same on both kinds of demands .

Perform the usual chi-squared test of H0 based on a
contingency table.

Example 6.10 results in the contingency table shown
in Table 6.15.  Although the chi-squared approx-
imation should be acceptable, it is preferable to use
Fisher’s exact test for a 2×2 table.  The p-value
reported by SAS for Fisher’s exact test is 0.67.  This

large p-value shows that the data are very consistent
with the hypothesis of independence of successive
outcomes.  Because the data come from the entire
industry, independence is entirely reasonable.

Table 6.15 Contingency table for successive
outcomes in Example 6.10.

x = F x = S Total

y = F   1 10 11

y = S 11 40 51

Total 12 50 62

6.3.3.4 Consistency of Data and Prior

If the prior distribution has mean Eprior(p), but the
observed data show x/n very different from the prior
mean, the analyst must ask if the data and the prior are
inconsistent, or if the prior distribution was misin-
formed.  The investigation is similar to that in Section
6.2.3.5.

Suppose first that x/n is in the right tail of the prior
distribution.  The relevant quantity is the prior probabil-
ity of observing x or fewer events.  This is
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where '(s) is the gamma function, a generalization of
the factorial function as described in Appendix A.7.6.
The name of this distribution is beta-binomial.  This
probability can be evaluated with the aid of software.
If the prior probability is any distribution other than a
beta distribution, Equation 6.17 does not have a direct
analytical expression.
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Just as in Sec. 6.2.3.5, one method of approximating the
integral in Equation 6.17 is by Monte Carlo sampling.
Generate a large number of values of p from the prior
distribution.  For each value of p, let y be the value of
Equation 6.18, which can be calculated directly.  The
average of the y values is an approximation of the
integral in Equation 6.17.  Another method of approxi-
mating the Equation 6.17 is by numerical integration.

If the probability given by Equation 6.17 is small, the
observed data are not consistent with the prior belief —
the prior belief mistakenly expected p to be smaller than
it apparently is.

Similarly, if x/n is in the left tail of the prior distribution
of the prior distribution, the relevant quantity is the
prior Pr( X # x ).  It is the analogue of Equation 6.17
with the limits of the summation in Equation 6.18 going
from 0 to x.  If that probability is small, the prior
distribution mistakenly expected p to be larger than it
apparently is.

Again consider Example 6.7, one AFW failure to start
in eight demands, and consider the industry prior,
beta(4.2, 153.1).  One easy approach is Monte Carlo
simulation.  Therefore, values of p were generated
from the beta distribution, using the technique
mentioned at the end of Section 6.3.2.5.3.  That is,
y1 was generated from a gamma(4.2, 1) distribution,
y2 was generated from a gamma(153.1, 1) distribu-
tion, and p was set to  y1/(y1 + y2).

The industry-prior mean of p is 0.027,  Because the
observed number of failures, one, is larger than the
prior expected number, 8×0.027 = 0.21, we ask
whether such a large failure count is consistent with
the prior.  The probability in question is Pr(X $ 1).
For each randomly generated p, Pr(X $ 1 | p) was
found, equal to 1 ! Pr(X = 0 | p) = 1 ! (1 ! p)8.  The
average of these probabilities, calculated for 100,000
random values of p, was 0.192, with a standard error
of 0.0003.  This means that the true probability is
0.192, with negligible random error.  Because this
probability is not small, the data appear consistent
with the prior distribution.

6.4 Failure to Change State: 
Standby Failure

As explained in Sec. 2.3.3, this type of failure is mod-
eled as a failure condition that occurs at an unknown
time between the most recent previous inspection, test,
or demand and the present one.

Each demand corresponds to a standby time.  The only
thing that can be observed is whether the system is

failed or not at the end of the standby period.  From
Equation 2.3, the probability that the system is failed at
time t is

p = 1 ! e!8t . (6.19)

Suppose that x failures are observed on n demands.  For
any one of the failures, denote the corresponding
standby time by ti, i = 1, ..., x.  For any one of the
successes, denote the corresponding standby time by sj,
j = 1, ..., n ! x.  All these numbers are observable in
principle.  Therefore, the likelihood is proportional to
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This likelihood will be treated in three distinct ways
below.  First, a simple special case will be considered.
Second, an approximation of the likelihood will be
developed and used.  Finally, a way to use the exact
likelihood in Bayesian analysis will be given.

First, consider a simple special case, when all the stand-
by times are equal, say, to some number t.  This can
happen if all the demands are test demands at equally
spaced intervals.  In this case, the probability of failure
on demand is the same for each demand, the quantity p
given by Equation 6.19.  Therefore, the number of
failures in n demands is binomial(n, p).  The analysis
methods of Section 6.3 can all be used – Bayesian or
frequentist estimation of p and all the methods of model
validation.  At the very end of the analysis, the conclu-
sions in terms of p should be translated into conclusions
in terms of 8, by solving Equation 6.19 for

8 = !ln(1 ! p)/t  .

This equation for 8 can be approximated as

8 . p/t

if p is small (say, < 0.1).

This last equation shows that the MLE of 8 is  approxi-
mated by

.  $ / /p t x nt=

Here x is the number of failures and nt is the total
standby time.  This total standby time is approximately
the total calendar time, so a simple estimate of 8 is the
number of failures divided by the total calendar time.
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model
{ for (i in 1:n) {
      p[i] <-  1 - exp(-lambda*t[i])
      x[i] ~ dbern(p[i])
   }
   lambda ~ dgamma(0.5, 0.00001)
}

Figure 6.40  Script for analyzing standby failure data
exactly.

The above simple approach assumes that all the standby
times are equal.  If the standby times are  approximately
equal, or nearly all equal, it is very appealing to use the
above technique, calling it an adequate approximation.
If, instead, the standby times differ greatly, one of the
two approaches given below can be used.  The first uses
an approximation of the likelihood, and the second is an
exact Bayesian method.

An approximation of the exact likelihood given in
Equation 6.20 can be developed as follows.  It is well
known that

1 ! exp(!8ti) . 8ti  .

This is the first order Taylor-series approximation, and
is valid when 8ti is small.  The error is on the order of
(8ti)

2.  A second-order approximation is less well
known, but it is not hard to show that

1 ! exp(!8ti) . 8tiexp(!8ti/2) .

That is, the two quantities on the left and right of the .
have the same second order Taylor expansions, and
they differ only by a term of order (8ti)

3.  Therefore, the
likelihood in Equation 6.20 is approximately equal to
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Compare this approximation of the likelihood with
Equation 6.1, and see that the approximate likelihood
here is proportional to the likelihood of x Poisson
events in time t, where t equals the total standby time
for the successes plus half the standby time for the
failures.

Therefore, all the likelihood-based methods for Poisson
data are approximately valid, treating the data as
showing x failures in time t.  The likelihood-based
methods consist of maximum-likelihood estimation and
all the Bayesian techniques.

The graphical methods for model validation from
Section 6.2 remain valid, because they give qualitative
indications and do not require a rigorous justification.
The above argument also suggests that the chi-squared
test of poolability in Section 6.2 can be used with the
present data, because the chi-squared test is only an
approximation in any case.   However, no simulations
to confirm this have been carried out for this handbook.

Finally, we give a different approach, an exact Bayesian
method that can be used if the standby times have been
recorded, based on Equation 6.20.  Figure 6.40 gives a
portion of a script for analyzing this type of data with
BUGS, based on the exact likelihood.  (See Figures
6.16 and 6.36 for similar scripts in other situations.)

In this script, pi is defined as 1 ! exp(!8ti).  The
random variable Xi is assigned a Bernoulli(pi) distribu-
tion.  This means that Xi equals 1 with probability pi and
equals 0 with probability 1 ! pi.  It is the same as a
binomial distribution with n = 1.  Finally, 8 is assigned
a prior distribution.  In Figure 6.40, the prior distribu-
tion is chosen to be close to the Jeffreys noninformative
prior for Poisson data, but any proper prior distribution
could be used.  BUGS requires a proper distribution, so
the second parameter of the gamma distribution cannot
be exactly zero.  An additional required portion of the
script, giving the data, is not shown in Figure 6.40.

6.5 Failures to Run during 
Mission

6.5.1 Estimates and Tests

This type of data can be analyzed using almost exactly
the same tools as for event rates in Section 6.2.  Certain
tools carry over exactly, and others are approximately
correct.
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6.5.1.1 Likelihood-Based Methods: MLEs and
Bayesian Methods

Suppose that n systems are run for their missions.
(Equivalently, we might assume that a system is run for
n missions.)  Suppose that x of the runs result in failure,
at times t1, ..., tx.  The remaining n ! x runs are com-
pleted successfully, and the systems are turned off at
times s1, ..., sn!x.  Observe the notation: t for a failure
time and s for a completed mission time.  The likeli-
hood is the product of the densities of times to failure,
for the systems that fail, times the probability of no
failure, for the systems that did not fail:

(no failure by sj).f ti
j

n x
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(As elsewhere, the capital pi denotes a product, analo-
gous to a capital sigma for a sum.)  Under the model
introduced in Section 2.4, the failure rate is assumed to
be constant, 8, the same for all the systems.  Therefore,
the time to failure has an exponential distribution.  As
stated in Appendix A.7.4, the density of an exponen-
tial(8) distribution is

 f(t) = 8e!8t

and the cumulative distribution function (c.d.f.) is

F(t) = 1 !  e!8t.

In particular, the probability of no failure by time s is
1 ! F(s).  Substitution of these values into the general
expression for the likelihood results in 

where t is defined as Eti + Esj, the total running time.

Except for a normalizer that does not depend on 8, this
is the Poisson probability of x failures in time t,

exp(!8t)8xtx/x! .

Recall that Section 6.2 dealt with x failures in time t.
Therefore, any statistical analysis that requires only a

multiple of the likelihood is the same in Section 6.2 and
here.  In particular, the maximum likelihood estimate of
8 is x/t.  The gamma distributions form the family of
conjugate priors, and any Bayesian analysis is carried
out the same way for the data here, and the data in
Section 6.2.

The subtle difference is that Eti is randomly generated
here, so t is randomly generated (although if most of the
systems do not fail during their missions, the random
portion of t is relatively small).  Also, the likelihood
here is not a probability, but a combination of densities
and probabilities, explaining the missing normalizer in
the likelihood.  These differences between this section
and Section 6.2 result in small differences in the confi-
dence intervals and the tests for poolability.

6.5.1.2 Confidence Intervals

Engelhardt (1995) recommends the following method
when all the mission times equal the same value, s.  The
probability of a system failure before time s is 

p = F(s) = 1 ! exp(!8s) . (6.21)

Based on x failures in n trials, find a confidence interval
for p, using the methods of Sec. 6.3.  Translate this into
a confidence interval for 8, using Equation 6.21

8conf, 0.05 = !ln(1 ! pconf, 0.05)/s
8conf, 0.95 = !ln(1 ! pconf, 0.95)/s .

This method does not use all of the information in the
data, because it ignores the times of any failures, using
only the fact that there was a failure at some time before
the mission time s.  However, if failures are few, the
loss of information is small.

Similarly, to perform tests when all the mission times
are the same, for example to test whether two data
subsets can be pooled, one can work with p, defined by
Equation 6.19, and use the tests given in Section 6.3.
The translation to 8 needs to be made only at the very
end of the analysis. 

When the mission times are not all equal, no exact
confidence interval method exists.  However, Bayesian
intervals can still be found, and are suggested.

6.5.1.3 Jeffreys Noninformative Prior

The Jeffreys prior can be worked out exactly, following
the process given in Appendix B.5.3.1.  If 8×(typical
mission time) is small (say, < 0.1), then the Jeffreys
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prior is approximately the same as in Section 6.2, an
improper distribution proportional to 8-1/2.

6.5.1.4 Tests for Poolability

The above arguments suggest that it is adequate to
ignore the random element of t, and use the methods of
Sec. 6.2, when estimating 8.  For testing whether
subsets of the data can be pooled, the same arguments
suggest that the chi-squared test of Sec. 6.2 can be used.
The chi-squared distribution is only an asymptotic
approximation in any case, and can probably be used
even when t has a small amount of randomness, al-
though no simulations to confirm this have been carried
out for this handbook.

The rest of this section considers a diagnostic plot that
was not introduced earlier.

6.5.2 Hazard Function Plot

One plot that is especially useful for failures to run is
the hazard function plot.  It is used to investigate wheth-
er 8 is constant during the entire mission.  As explained
in Appendix A.4.4 for a nonrepairable system, 8)t is
the approximate probability that the system will fail
during a time interval of length )t, given that it has not
yet failed.  The precise name for 8 is the hazard rate,
or hazard function, although it is often also called the
failure rate.

Suppose that the system must run for some mission
time, and the data value for that mission is either the
mission time, if the system runs to the end without
failing, or the failure time, if the system fails during the
mission.  The outcome, failure or success, is also
recorded.  The total data set consists of the data from a
number of missions.

Now consider the possibility that 8 is not constant.
Therefore, we write it as 8(t).  An estimate of 8(t))t at
some time t is the number of systems that failed during
the interval (t, t + )t) divided by the number of systems
that had not yet failed by time t.  This leads to the
following rather unsatisfactory estimate of 8(t).  Divide
the mission time into small intervals, each of length )t,
with the intervals so short that hardly any of them
contain more than one failure time.  In an interval with
no recorded failures, estimate 8(t) by 0.  In an interval
(t, t + )t) with one failure, estimate 8(t))t by 1/nt,
where nt is the number of systems that had not yet failed
by time t.  Therefore, the estimate of 8(t) there is
1/(nt)t).  For intervals with more than one failure, set
the numerator to the number of failures.

This estimate consists of a number of spikes, at times
when failures were observed.  Because it is so un-
smooth, this estimate is not at all attractive.  However,
it motivates a very simple estimate of the cumulative
hazard function, defined as

 .Λ ( ) ( )t u du
t

= ∫ λ
0

In this definition, the argument t of 7 is the upper limit
of integration.  Here 7 and 8 are related in the same
way that a c.d.f. and a density are related.  In particular,
8(t) is the derivative of 7(t).

A natural and simple estimate of 7(t) is a step function,
which is flat except at times when failures occurred.  At
a time t when a failure occurred, the estimate of 7
jumps by 1/nt, where nt is defined, just as above, as the
number of systems that had not yet failed by time t.  If
exactly simultaneous failures occur, for example
because of roundoff in reporting the failure times, the
estimate of 7 jumps by the number of failures divided
by nt.  This plot is due to Nelson (1982).  The full name
of the plot is the cumulative hazard function plot.
This technique is illustrated with the following exam-
ple.

Example 6.11 EDG failure-to-run times.

Grant et al. (1999b) state that 23 failures to run
occurred during the EDG tests performed approxi-
mately once every 18 months.  All these failures
were reported by plants subject to Regulatory
Guide RG1.108, and there were approximately
665 such tests performed at these plants during
the study period. These tests require the EDG to
run for 24 hours.  Of the 23 failure reports, 19
reported the times to failure.  The 19 reported
times are given below, in hours.

0.17
0.23
0.25
0.33

0.33 
0.35
0.93 
1.18

2.67
3.00 
4.00
5.50

  6.00   
  8.00 
10.00
10.00   

11.50   
13.00   
17.78

Grant et al. (1999b) assume that the lack of a re-
ported time is statistically independent of the time at
failure, so that the 19 reported times are representa-
tive of all 23 times.

There were approximately 665 such tests.  There-
fore, the cumulative hazard plot jumps by 1/665 at
time 0.17 hours, by 1/664 at time 0.23 hours, and so
forth, until it jumps by 1/647 at time 17.78.  It is
important that the duration of all the tests is known to
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Figure 6.41 Plot of cumulative failure count, a close
approximation of plot of cumulative hazard function
when only a small fraction of the systems fail.

be 24 hours.  This fact guarantees that none of the
EDGs drop out early, so that after 18 failures 647
EDGs are still running.  Actually, this is only approxi-
mate, because it ignores the four failures with unre-
ported times.

The jumps are almost the same height, because
1/665 equals 1/647 to two significant digits.  There-
fore Grant et al. (1999b) plot the cumulative number
of failures (a jump of 1 at each failure), instead of the
estimated cumulative hazard function.  The two
graphs make the same visual impression, and the
cumulative failure plot was easier to explain in the
report.  This plot is shown here, as Figure 6.41.

The cumulative hazard plot would differ only in that
the vertical scale would be different, and the jumps
would not be exactly the same size, though the
jumps would be almost the same size in this exam-
ple.

As explained in introductory calculus courses, when a
function is graphed as a curve, the derivative of the
function is the slope of the curve.  Therefore, the slope
of a cumulative hazard plot near time t estimates the
derivative of 7 at time t.  But the derivative of 7(t) is
8(t).  Therefore, a constant slope indicates constant
8(t), and a changing slope indicates changing 8(t).

Grant et al. (1999b) note that for times less than
about one half hour the slope is approximately
constant, and steep.  It is again constant, but less
steep, from about 1/2 hour until about 14 hours, and
it is smaller yet after 14 hours.  Therefore, Grant et
al. (1999b) estimate three values for 8, correspond-
ing to these three time periods.  They comment that
the early, middle, and late failures seem to corre-
spond in part to different failure mechanisms. 

6.6 Recovery Times and Other
Random Duration Times

The previous analyses have all involved a single
parameter, 8 or p.  The analysis of duration times is
different because now a distribution must be estimated,
not just a single parameter.

A distribution can be estimated in many ways.  If the
form of the distribution is assumed, such as exponential
or lognormal, it is enough to estimate one or two
parameters; the parameter or parameters determine the
distribution.  If the form of the distribution is not
assumed, the distribution can be estimated nonparamet-
rically, or characteristics of the distribution, such as
moments or percentiles, can be estimated.

To test whether data sets can be combined (pooled),
both parametric tests and nonparametric tests exist.
The parametric tests typically test whether the means or
variances of two distributions are equal, when the
distributions have an assumed form.  The most common
nonparametric tests test equality of the distributions
against the alternative that one distribution is shifted
sideways from the other.

This section is long, because so many distribution
models can be assumed and because the model assump-
tions can be violated in so many ways.  A brief outline
of the section is as follows:

6.6.1  Characterization of a single distribution
Estimation of moments, percentiles, c.d.f.s
Fitting of four parametric models (frequentist
and Bayesian parameter estimates)

6.6.2  Model validation (graphs and hypothesis tests)
Poolability, trend
Goodness of fit to assumed parametric models
Consistency of data with prior for Bayesian
parameter estimates

6.6.3  Nonparametric density estimation

Many of the methods will be illustrated using the data
of Example 6.12, taken from Atwood et al. (1998).

This example shows the times when power could
have been recovered, for plant-centered LOSP
events, that is, for events not caused by grid prob-
lems or by widespread severe weather.  (Real life is
complicated: sometimes a plant does not restore
power as quickly as it could, and the event report
states when power was actually restored, and usu-
ally also when it could have been restored.  The
times given by Atwood et al. (1998) as “recovery
times” show when power could have been restored,
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if that time was reported and different from the actual
recovery time.)  Discussions of this example will use
the terms recovery time and duration interchange-
ably.  Momentary events (duration less than two
minutes) and events with no reported duration have
been excluded.  For common-cause events that
affected multiple units at a site, the average recovery
time is used.

Example 6.12 LOSP recovery times.

.
Atwood et al. (1998) report 115 times of recovery of
lost offsite power.  The data are categorized into
three possible values for plant status:  T, S, and P,
with meanings explained in the table below.  The
durations in minutes and the dates (MM/DD/YY) are
shown.

P: Plant remained at power throughout LOSP event
(8 times)

   6   03/01/80
  45   07/25/85
  65   07/16/88

 113   01/18/96
 147   06/03/80
 355   11/12/90

 385   04/11/94
1138   01/03/89

S: Plant was shut down before and during LOSP event
(62 times)

   2   06/04/84
   2   08/17/87
   2   06/29/89
   2   05/21/94
   3   06/26/93
   3   10/22/84
   3.5 11/21/85
   4   04/22/80
   4   04/04/87
   4   10/20/91
   5   05/03/84
   8   06/24/88
   9   12/26/88
  10   08/01/84
  10   04/28/92
  10   12/23/81
  11   10/04/83
  11   07/24/91
  12   06/22/93
  12   07/19/86 
  14   02/26/90

  14   11/16/84
  14   02/01/81
  15   04/27/81
  15   12/19/84
  15   10/12/93
  17   04/26/83
  17   10/14/87
  20   03/23/92
  22   08/24/84
  24   07/29/88
  24   07/29/88
  29   03/20/91
  29   09/16/87
  29   05/14/89
  35   04/02/92
  37   03/21/87
  37   05/19/93
  37   07/09/90
  43   05/07/85
  53   09/11/87
  59   10/16/87

  60   06/22/91
  60   06/16/89
  62   07/15/80
  67   03/13/91
  73   08/28/85
  77   03/29/92
  97   01/08/84
 120   06/05/84
 120   01/16/81
 127   01/20/96
 132   02/27/95
 136   04/08/93
 140   03/20/90
 155   03/05/87
 163   10/08/83
 240   11/14/83
 240   03/07/91
 335   04/29/85
 917   10/21/95
1675   11/18/94

T: Plant tripped because of LOSP event
(45 times)

   2   02/28/84
   4   11/21/85
   4   11/17/87
   5   08/16/85
   6   05/03/92
  10   09/10/93
  10   10/12/93
  11   07/26/84
  13   10/07/85
  14   08/13/88
  15   02/16/84
  15   09/14/93
  19   10/25/88
  20   12/12/85
  20   03/27/92 

  20   08/21/84
  20   07/16/84
  20   06/27/91
  24   06/15/91
  25   10/03/85
  29   06/22/82
  38   07/17/88
  40   02/11/91
  45   01/16/90
  45   03/25/89
  46   01/01/86
  57   10/19/92
  60   03/21/91
  60   10/22/85
  62   07/15/80

  90   02/12/84
  90   03/29/89
  90   06/17/89
  95   12/31/92
  95   12/31/92
  95   10/16/88
  96   12/27/93
 100   01/28/86
 106   06/03/80
 118   07/23/87
 118   07/23/87
 277   04/23/91
 330   02/06/96
 388   07/14/87
 454   08/22/92

The group P exists because some plants are permit-
ted to remain at power during certain LOSP events.

Throughout this section, the random variable is denoted
by T, because typically the random quantity is a dura-
tion time, such as time to recovery of the system.
Several examples were given in Section 2.5.1: time
until restoration of offsite power, duration of a repair
time, and others.  Let F denote the c.d.f. of T, F(t) =
Pr(T # t).  It is assumed that n times will be observed,
T1, T2, ... , Tn.  The assumptions of Section 2.5.2 are
repeated here.

C The Ti s are independent,
C Each Ti has the c.d.f. F(t).

A data set satisfying these assumptions is called a
random sample from the distribution.  Sometimes the
Ti s are called independent identically distributed
(i.i.d.).  The term random sample can refer either to the
random variables (Tis) or to the observed values, t1, t2,
... , tn.  The data are used to estimate properties of the
distribution.  This can also be described as estimating
properties of the population, where the population is
the infinite set of values that could be randomly gener-
ated from the distribution.

6.6.1 Characterization of Distribution

6.6.1.1 Nonparametric Description

The tools in this subsection are called nonparametric
because they do not require any assumption about the
form of the distribution.  For example, the distribution
is not assumed to be lognormal, exponential, or any
other particular form.

6.6.1.1.1 Moments

To estimate the population mean : or a population
variance F2, two simple estimators are the sample
mean, defined as

T
n

Ti
i

n

=
=
∑1

1

and the sample variance, defined as
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The sample mean and sample variance are known to be
unbiased for the population mean and variance, respec-
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tively.  In other words, E(T
_

) = : and E(S 2) = F 2.  These
statements are true regardless of the distribution F,
requiring only the assumptions of a random sample.
The sample standard deviation, S, is the square root
of the sample variance.  When defining S2 some authors
use n in the denominator instead of n ! 1, with corre-
sponding adjustment of formulas that involve S, but this
handbook uses the above definition consistently, both
here and in Appendix B.  In applications with computer
packages, note which definition is used and make any
necessary adjustments to formulas in this handbook.

These are all-purpose estimators, but they are not the
only possible estimators.  For example, the variance of
an exponential distribution is the square of the mean.
Therefore, a good estimator of the variance would be
the square of the estimator of the mean.  This estimator
relies heavily on the assumption of exponentiality,
whereas the above estimators make no such assump-
tions.  General principles of estimation are discussed in
Appendix B.4.1.

6.6.1.1.2 Percentiles

To estimate percentiles of a distribution, it is useful to
put the data in ascending order from the smallest to the
largest observation.  The recovery times in Exam-
ple 6.12 have been arranged this way.  The variables
obtained by ordering the random sample are called the
order statistics, and are denoted by T(1) # T(2) # AAA #
T(n).  The observed values are written t(1) # t(2) # AAA # t(n).
Some important estimates based on the order statistics
are the sample median, other sample percentiles, and
the sample range.  The general definition of the 100qth
sample percentile, where 0 < q < 1, is a number t such
that the fraction of observations that are # t is at least q
and the fraction of observations that are $ t is at least
1 ! q.

For example, the sample median is defined to be t such
that at least half (because q = 0.5) of the observations
are # t and at least half (because 1 ! q = 0.5) are $ t.
This boils down to the following.  If n is odd, the
sample median is the “middle” order statistic,  t(m) with
m = (n + 1)/2.  If n is even, with m = n/2, there is no
unique “middle” order statistic.  Any number between
the two middle order statistics, t(m) # t # t(m+1), could be
used.  However, nearly everyone uses the average of the
two middle order statistics (t(m) + t(m+1))/2 as “the”
sample median.

The other sample percentiles are defined similarly, with
some averaging of two order statistics if necessary.
Note that the sample 90th percentile is t(n) if n < 10, the
sample 95th percentile is t(n) if n < 20, and so forth.

Order statistics that are sometimes used are:  the lower
and upper quartile, defined as the 25th and 75th
percentiles; percentiles that include most of the distribu-
tion, such as the 5th and 95th percentiles; and the
extremes,  t(1) and   t(n).  The interquartile range is the
upper quartile minus the lower quartile.  The sample
range is the difference between the largest and smallest
ordered observations, t(n) ! t(1).  Be careful with inter-
pretation.  As data continue to be collected, the sample
interquartile range stabilizes at the interquartile range of
the distribution, but the sample range does not stabilize
at all — it just grows every time a new t is observed
that is outside the former observations.

The sample median has the advantage of not being
strongly influenced by extreme observations.  The
sample mean, on the other hand, can be strongly influ-
enced by even one extreme data value.  The sample
variance is even more sensitive to extreme values,
because it is based on squared terms.  Therefore, the
sample standard deviation, defined as the square root of
the sample variance, is also sensitive to extreme terms.
Other measures of dispersion, such as the interquartile
range, are much less sensitive to extreme values.  In
general, sample percentiles are much less sensitive to
extreme observations than are sample moments.

The recovery times of Example 6.12 have sample
moments and percentiles given in Table 6.16.

Table 6.16 Statistics based on the recovery
times (minutes) of Example 6.12.

P S T

n 8 62 45

Stand. deviation   373.2 241.4   99.9

95th %ile 1138 240 330

75th %ile
(upper quartile)

  370   73   95

Mean  281.75   92.3   73.4

50th %ile
(median)

  130   24   40

25th %ile
(lower quartile)

    55   10   15

5th %ile       6     2     4

For the P group, the sample median is taken as the
average of the two middle numbers.  Even though
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the S group has an even number of observations, its
sample median is unique, because t(31) and t(32)

happen to be equal.  The T group has an odd num-
ber of observations, so its sample median is unique,
t(23).

The S group has one very extreme value, which
influences the moments.  The sample mean for this
group is larger than the upper quartile — someone
who considers the mean to be “the” average could
say that more than 75% of the observed times are
below average.  Such a thing can happen with a
skewed distribution.  This is one reason why many
people prefer percentiles to moments for describing
a skewed distribution.

There are situations in which some of the times are not
observed.  Section 6.5 dealt with such a situation, when
the times of interest were times of EDG failure to run,
and not all these times were reported.  In the present
section, nearly all the times are assumed to be observed,
with no systematic bias in which times fail to be observ-
able.

6.6.1.1.3 The Empirical Distribution Function

An estimate of F(t) called the empirical distribution
function (EDF) is defined as follows:  For an arbitrary
value of t > 0, define

= (Number of observations # t) / n.$ ( )F t

The EDF is a step function.  It increases by 1/n at each
observed time if all observations are distinct.  More

generally, if there are m times equal to t,  has a$ ( )F t

positive jump of m/n at t.

In some settings the function 

1 ! F(t) = Pr(T > t)

is of interest.  If T is the time until failure, 1 ! F(t) is
called the reliability function, R(t), in engineering
contexts, and the survival function, S(t), in medical
contexts.  A suitable word remains to be coined when T
is the time until recovery or repair.  The empirical
reliability function, or the empirical survival function,
is defined as 1 minus the EDF.  Anything that can be
done with F can be translated in terms of 1 ! F, so this
discussion will only consider F.

With a little mental exercise, the EDF can be expressed
in familiar terms.  For any particular t, let p denote F(t)
= Pr(T # t).  In the data, define a “demand” to be the
generation of an observed time, and define the ith

observation ti to be a “failure” if ti # t.  By the assump-
tions for a random sample, any observation has proba-
bility p of being a failure, and the outcomes (failures or
successes) are statistically independent of each other.

By its definition,  is the number of failures di-$ ( )F t

vided by the number of demands, which is , as$p

indicated in Section 6.3.1.  Therefore,  is an$ ( )F t
unbiased estimator of F(t) at any t.  It is close to F(t)
when the number of observations is large, and a confi-
dence interval for F(t) can be constructed, the familiar
confidence interval for p.

Figure 6.42 shows the EDF based on the data in
Example 6.12 for group T.
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Figure 6.42  Empirical distribution function (EDF) for
the data from group T in Example 6.12.

6.6.1.1.4 Histogram Estimate of the Density

The eye smooths the EDF, compensating for its jagged
form.  To accomplish the same sort of smoothing for a
density estimate, group the observed times into bins of
equal width, count the number of observations in each
bin, and plot the histogram, a form of bar chart with the
height of each bin equal to the number of observations
in the bin.  The histogram is proportional to an estimate
of the density.  Some software packages can rescale the
height of the histogram so that the total area equals 1,
making it a true density estimate.  Books and Ph. D.
theses have been written on density estimation, and
some modern density estimators are quite sophisticated.
A few such are given in Section 6.6.3.  Nevertheless,
the lowly histogram is often adequate for PRA pur-
poses.

Figures 6.43 and 6.44 show two histograms for the
data from the above EDF, using two different bin
widths.  The analyst must decide what bin width
gives the most reasonable results, based on belief
about how smooth or ragged the true density might
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Figure 6.44  Histogram of same data, with bin
width 10.

be.  Most people would judge Figure 6.44 to be too
rough, and would therefore choose wider bins.
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Figure 6.43  Histogram of the data from group T in
Table 6.16, with bin width 50.

6.6.1.2 Fitting a Parametric Distribution

Sometimes it is desirable to fit some assumed distribu-
tional form to data.  This subsection gives estimators if
the assumed distribution is lognormal, exponential,
gamma, or Weibull.  Bayesian and non-Bayesian
estimates are given, with much of the latter taken from
an INEEL report by Engelhardt (1996).

6.6.1.2.1 Lognormal Distribution

This model assumes that T has a lognormal distribution,
or equivalently, that ln T has a normal(:, F2) distribu-
tion.  Define X = lnT.  

Frequentist Estimates.  The usual estimates of : and
F2 are:

x
n

xi i=
1

Σ

and

.s
n

x xX i i
2 21

1
=

−
−Σ ( )

These estimates have the same form as those given in
Section 6.6.1.1.1 for the mean and variance of T, but
these are for lnT.  Calculate the estimates of  : and F2

to determine the estimated normal distribution of lnT,
which determines the estimated lognormal distribution
of T.  Note that the sample variance is defined with n !
1 in the denominator, although some authors use n in
the definition and slightly different formulas below.

The material below is presented in many statistics
books, based on the fact that lnT has a normal distribu-

tion.  The distribution of   is chi-squared( ) /n S X− 1 2 2σ
with n ! 1 degrees of freedom.  It follows that a two-
sided 100(1 ! ")% confidence interval for F2 is

.( )( ) / ( ), ( ) / ( )/ /n s n n s nX X− − − −−1 1 1 12
1 2
2 2

2
2χ χα α

Here is the q quantile, that is, the 100qχq n2 1( )−
percentile, of the chi-squared distribution with n!1
degrees of freedom.

The distribution of  is normal( :, F2/n).  If F2 isX
known, it follows that a 100(1!")% confidence interval
for : is 

, x z n± −1 2α σ/ /

where z1!"/2 is the 100(1!"/2) percentile of the standard
normal distribution.  For example, z0.95 gives a two-
sided 90% confidence interval.

In the more common case that both : and F2 are un-
known, use the fact that

( ) / ( / )X S nX− µ

has a Student’s t distribution with n!1 degrees of
freedom.  It follows that a 100(1 ! ")% confidence
interval for : is

 ,x t n s nX± −−1 2 1α / ( ) /

where  is the 1 !"/2 quantile of the Stu-t n1 2 1− −α / ( )

dent’s t distribution with n!1 degrees of freedom.  For
example, t0.95(n!1) gives a two-sided 90% confidence
interval.  Percentiles of Student’s t distribution are
tabulated in Appendix C.
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Bayesian Estimation.  Bayesian estimates are given
here.

Conjugate Priors.  The conjugate priors and
update formulas are presented by Lee (1997, Sec. 2.13).
They depend on four prior parameters, denoted here as
d0, F0

2, n0, and :0.  The notation here follows the
notation used elsewhere in this handbook.  It is not the
same as Lee’s.  Quantities with subscripts, such as F0

2

or d1, are numbers.  Quantities without subscripts,  F2

and :, have uncertainty distributions.

It is useful to think of having d0 degrees of freedom,
corresponding to d0 + 1 prior observations for estimat-
ing the variance, and a prior estimate F0

2.  More pre-
cisely, let the prior distribution for F2/(d0F0

2) be in-
verted chi-squared with d0 degrees of freedom. That is,
d0F0

2/F2 has a chi-squared distribution with d0 degrees
of freedom.  Therefore it has mean  d0, and therefore the
prior mean of 1/F2 is 1/F0

2.  (See Appendix A.7.7 for
more information on the inverted chi-squared distribu-
tion.)

An alternative notation for the above paragraph would
define the precision J = 1/F2, and the prior precision J0

= 1/F0
2.  Then the prior distribution of d0J/J0 is chi-

squared with d0 degrees of freedom.  Although we shall
not use this parameterization, it has adherents.  In
particular, BUGS (1995) uses J instead of F2 as the
second parameter of the normal distribution; see
Spiegelhalter et al. (1995).

Conditional on F2, let the prior distribution for : be
normal with mean :0 and variance F2/n0.  This says that
the prior knowledge of : is equivalent to n0 observa-
tions with variance F2.  It is not necessary for  n0 to
have any relation to d0. 

The Bayes update formulas are

d1 = d0 + n,
n1 = n0 + n,

 andµ µ1 0 0 1= +( ) /n nx n

.σ σ µ1
2

0 0
2 2 0 1

0 1
0

2
11= + − +

+
−

⎡

⎣
⎢

⎤

⎦
⎥d n s

n n

n n
x dX( ) ( ) /

Here the subscript 1 identifies the posterior parameters.
The posterior distributions are given as follows.  First,
F 2/(d1F1

2) has an inverted chi-squared distribution with
d1 degrees of freedom.  That is, the posterior mean of
1/F 2 is 1/F1

2, and a two-sided 100(1!") credible
interval for F 2 is

.( )d d d d1 1
2

1 2
2

1 1 1
2

2
2

1σ χ σ χα α/ ( ), / ( )/ /−

Conditional on F 2, the posterior distribution of : is
normal(:1, F2/n1).  Therefore, conditional on  F 2, a two-
sided 100(1!")% credible interval for : is

.µ σα1 1 2 1± −z n/ /

The marginal posterior distribution of :, that is, the
distribution that is not conditional on F 2, is as follows.
The expression

( ) / ( / )µ µ σ− 1 1 1n

has a Student’s t distribution with d1 degrees of free-
dom.  It follows that a 100(1 ! ")% credible interval
for : is

 .µ σα1 1 2 1 1 1± −t d n/ ( ) /

Noninformative Prior.  The joint noninfor-
mative prior for (:, F 2) is proportional to 1/F 2.  Lee
(1997, Sec. 2.13) presents this prior, as do Box and
Tiao (1973, Sec. 2.4).  Lee points out that when d0 =
!1, n0 = 0, and F0

2 = 0, the conjugate prior distribution
reduces to the noninformative prior.  In the formulas

just given above, n1 = n, d1 = n ! 1, :1 = , and F1 =x
sX.  The credible intervals then agree numerically with
the confidence intervals given above.

Possible Further Analyses.  Some data
analyses require only the posterior distribution of one or
both parameters.  In that case, use the above posterior
distributions, with either an informative or noninform-
ative prior.  Other analyses require more, such as simu-
lation of a set of lognormal times T or a credible
interval for the mean of T.  If so, simulation of the
quantity of interest is a useful technique.  Begin each
case of the simulation by generating a value of F2 from
its posterior distribution.  Then generate a value of :
from its distribution conditional on F 2.  Then do
whatever is required next to obtain the quantity of
interest: generate a random value of T from the lognor-
mal(:, F) distribution, or calculate E(T) = exp(: +
F2/2), or calculate whatever else is needed.  Save the
quantity of interest produced in this way.  Repeat this
process as many times as needed to obtain a sample that
accurately represents the distribution of interest.

Model Validation.  Model validation is discussed in
general in Section 6.6.2.  Many of the methods given
there are applicable to any assumed distribution.  Some
methods, however, have been developed just for the
normal and lognormal distributions.  They are con-
tained in Sections 6.6.2.1.2, 6.6.2.2.2, and 6.6.2.3.2.
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6.6.1.2.2 Exponential Distribution

The exponential distribution is related to a Poisson
process, because the times between successive events in
a Poisson process have an exponential distribution.

The exponential distribution is presented in Appendix
A.7.4, with two possible parameterizations. The first
uses 8 = 1/E(T), and the second uses : = 1/8 = E(T).  In
data analysis, sometimes one parameter seems more
natural and convenient than the other.  In the two
parameterizations, the likelihood function is

8nexp(!8Gti)

or

:!nexp(!Gti/:) .

As a function of 8, the likelihood function here is
proportional to the likelihood function given by Equa-
tion 6.1 for Poisson data.  (Replace x in Equation 6.1 by
n and t by Eiti.)  Therefore, many of the results below
are similar to or identical to the results in Section 6.2
for Poisson data.

Frequentist Estimation.  It can be shown that the MLE

of : is the sample mean, .  Therefore, to estimate thet
distribution, estimate : by .  This determines thet
estimated exponential distribution.  The corresponding

estimate of 8 / 1/: is .1/ t

For a (1 ! ") confidence interval, or equivalently a
100(1 ! ")% confidence interval, the lower limit for 8
is

8conf, "/2 = 
χα / ( )2

2 2

2

n

tiΣ

and the upper limit is

8conf, 1 ! "/2 =  .
χ α1 2

2 2

2
− / ( )n

tiΣ

(See Martz and Waller 1991.)  Confidence limits for :
= 1/8 are obtained by inverting the confidence limits for
8.  For example, the lower confidence limit for : equals
1 divided by the upper confidence limit for 8.

Bayesian Estimation.  Now consider Bayesian estima-
tion.

Conjugate Prior.  The gamma distribution is
a conjugate prior for 8.  That is, let t1, ... , tn be inde-

pendent observations from an exponential(8) distribu-
tion.  Let the prior distribution of 8 be gamma("0, $0).
This uses the same parameterization as when 8 is a
Poisson parameter (Section 6.2.2.4), so that $0 has units
of time and the prior mean of 8 is "0/$0.  A direct
calculation shows that the posterior distribution of 8 is
also gamma, with posterior parameters

"1 = "0 + n
$1 = $0 + E ti .

The subscript 1 identifies the posterior parameters.  The
prior parameters have a simple intuitive interpretation
– the prior information is “as if” "0 duration times had
been observed with total value $0. 

The percentiles of the posterior distribution are given
by

.λ
χ α

βp

p=
2

1

1

2

2

( )

Therefore, for example, a two-sided 90% credible
interval has end points
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and 

 .

There are two possible ways to perform the correspond-
ing analysis in terms of :.  (a) One way is to perform
the above analysis in terms of 8, and then translate the
answer into answers for : = 1/8.  Be careful when
doing this.  The percentiles translate directly, with the
100p percentile :p = 1/81!p.  For example, :0.95 = 1/80.05.
The moments do not translate directly, however.  For
example, the posterior mean of : is $1/("1 ! 1), not 1
divided by the mean of 8.  (b) The other way is to let :
have an inverted gamma distribution.  This distribution
is defined in Appendix A.7.7.

Either analysis gives exactly the same results.  The
second approach is just a disguised version of the first
approach, using a different distribution to avoid intro-
duction of the symbol 8.

Noninformative Prior.  The Jeffreys nonin-
formative prior for 8 can be expressed as a gamma(0, 0)
distribution.  This is an improper distribution, that is, it
does not integrate to 1, but it does result in proper
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posterior distributions as long as some data have been
observed.  Note, this prior is slightly different from the
Jeffreys prior when the data have a Poisson distribution.
When the gamma(0, 0) prior is used with exponential
data, the posterior parameters reduce to

"post = n
$post = E ti .

Then the Bayes posterior credible intervals are numeri-
cally equal to the confidence intervals.  If the purpose
of a “noninformative” prior is to produce intervals that
match confidence intervals, this purpose has been
perfectly accomplished.

Discussion.  The above work has illustrated some facts
that are generally true. When the observations have a
discrete distribution, such as Poisson or binomial, the
so-called noninformative priors do not produce credible
intervals that exactly match confidence intervals.  This
is related to the fact that confidence intervals from
discrete data do not  have exactly the desired confi-
dence coefficient.  Instead, they are constructed to have
at least the desired long-run coverage probability.  The
situation is different when the observations are continu-
ously distributed, as in the present case with exponen-
tially distributed times.  In this case, the confidence
intervals have exactly the desired long-run coverage
probability, and posterior credible intervals, based on
the noninformative prior, are numerically equal to the
confidence intervals.

Nonconjugate priors can also be used.  The procedure
is similar to that in Section 6.2.2.6, but now uses the
exponential likelihood given above.  Therefore, it is not
discussed here.

Model Validation.  Model validation is discussed in
general in Section 6.6.2.  Many of the methods given
there are applicable to any assumed distribution.  A few
methods, however, have been developed just for the
exponential distribution.  They are mentioned in Sec-
tions 6.6.2.3.1 and 6.6.2.4.1.

6.6.1.2.3 Gamma Distribution

The distribution of T is gamma(", J) if the density is

.f t t e t( )
( )

/= − −1 1

τ αα
α τ

Γ

Note, this is a different parameterization from the
previous section and from Equation 6.4.  This parame-
terization is related to the earlier parameterization by

the relation J = 1/$.  In the present context, t and J
both have units of time.

The MLEs of the parameters are given by Bain and
Engelhardt (1991, p. 298) or by Johnson et al. (1994,
Sec. 17.7).  They are the solutions of the equations

τ α= t /
, (6.23)ln( ) ( ) ln( / ~)α ψ α− = t t

where R(u) = 'N(u)/'(u) is the digamma function,
calculated by some software packages, and

,[ ]~ exp ( / ) lnt n ti= 1 Σ

is the geometric mean of the observed times.  Equation
6.23 must be solved for " by numerical iteration.  Bain
and Engelhardt (1991, p. 298) give a table of approxi-
mate solutions, which may be interpolated.

The MLEs of the two parameters determine the esti-
mated gamma distribution.

Bayes estimation is complicated because the gamma
distribution, like the lognormal distribution, has two
parameters, and these two parameters must have a joint
distribution.  Martz and Waller (1991, Sec. 9.5.2) cite
Lwin and Singh (1974) for an analysis that was feasible
in the 1970s.  A simpler approach today would use the
freely available software package BUGS (1995),
described in Section 6.2.2.7, Section 8.3.3.3, and
elsewhere in this handbook.  BUGS is designed for
models with many unknown parameters, and should
make short work of a model with only two.  The joint
prior distribution would not need to be conjugate.

6.6.1.2.4 Weibull Distribution

A three-parameter Weibull distribution is given in
Appendix A.7.5.  A two-parameter form of the Weibull
distribution is given here, by setting the location param-
eter 2 to zero.  The density is

 .[ ]f t t t( ) ( / )( / ) exp ( / )= −−β α α αβ β1

As with the gamma distribution, the maximum likeli-
hood equations do not have closed-form solutions.  The
estimates must be found by iteratively solving

Σ
Σ

Σ
t t

t n
ti i

i
i

β

β β
ln( )

ln− −
1 1
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Zacks (1992, Section 7.5) gives the following simple
method for solving the first equation.  Begin with

.  Then repeatedly solve the equation$β0 1=

$ ln( )
ln

$
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β
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i i
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with n = 0, 1, 2, ...  The value of  converges quickly$βn

to the MLE .  Then set$β

 .$
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For more information, see Zacks (1992) or Bain and
Engelhardt (1991).

Alternatively, a simple approximate graphical estimate
is based on the hazard function.  Plots of the cumulative
hazard were discussed in Section 6.5.2.  It can be
shown that the cumulative hazard function of the
Weibull distribution is

H(t) = (t/")$ .

Therefore, estimate the cumulative hazard function as
explained in Section 6.5.2, by jumping at each observed
time, with the size of the jump equal to 1 divided by the
number of times that have not yet been equalled or
exceeded.  The jump at t(1) is 1/n, the jump at t(2) is 1/(n
! 1), and so forth until the final jump at t(n)  is 1.  Call

this estimate .  The equation for the Weibull$ ( )H t

cumulative hazard function can be rewritten as

log H(t) = $logt !$log" , (6.24)

which is linear in logt.  Therefore, plot log[ $ ( )]H t

against logt, that is, plot  against t on log-log$ ( )H t
paper, and fit a straight line to the plot by eye.  Pick a
point on the line and substitute those values of t and

 into Equation 6.24.  This is one equation that $$ ( )H t
and log" must satisfy.  Pick a second point on the line
and obtain a second equation in the same way.  Solve
those two equations for $ and log", thus obtaining

estimates of $ and ".  In the calculations, it does not
matter whether natural logarithms or logarithms to base
10 are used, as long as the same type is used every-
where.

This plot also gives a diagnostic test of whether the
Weibull distribution is appropriate.  The degree to
which the plotted data follow a straight line indicates
the degree to which the data follow a Weibull distribu-
tion.

Just as in Sections 6.6.1.2.1 and 6.6.1.2.3, Bayes
estimation is complicated here by the multiple parame-
ters.  Martz and Waller (1991, Sec. 9.1) cite a number
of early papers using various prior distributions.
However, the easiest Bayesian approach today would
be to assign convenient diffuse priors to the parameters
and use BUGS (1995), described in Section 6.2.2.7,
Section 8.3.3.3, and elsewhere in this handbook.

6.6.2 Model Validation

This section considers several topics.  First, the usual
investigations of the model assumptions are considered:
whether subsets of the data all correspond to the same
distribution, whether the distribution changes with time,
and whether the times are serially correlated instead of
statistically independent.  In addition, the distribution
may have been modeled by some parametric form, so
the goodness of fit is investigated.  Finally, if parame-
ters have been estimated in a Bayesian way, the consis-
tency of the data with the prior must be investigated.

The order described above follows the actual order of
analysis.  First, the analyst would check to see what
data subsets can be pooled and whether the usual
assumptions seem to be satisfied.  Only then would it be
appropriate to try to fit some standard distribution to the
data.

6.6.2.1 Poolability of Data Sources

To illustrate the methods here, this subsection will
consider the three groups of data in Example 6.12,
corresponding to three conditions of the plant during
the LOSP event.  As elsewhere in this chapter, graphi-
cal methods are considered first, and statistical tests
second.

6.6.2.1.1 Graphical Methods

A simple, graphical method of comparison is to overlay
the EDFs for the different data subsets on a single
graph.  Then, look to see if the EDF are intertwined,
indicating that the subsets may be pooled, or if they are
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separated, shifted sideways from each other, indicating
that the data subsets may not be pooled.  This method
is simple, but the graph can become very cluttered,
especially if a moderate or large number of subsets
must be compared.  The same comment can be made
for comparing separate histograms of the data subsets.

A graph that has come into common use is the box-
and-whisker plot, or box plot.  The lower and upper
edges of the box are the lower and upper quartiles of
the data.  Thus, the box can be thought of as containing
half the data, with 1/4 of the remaining data on each
side.  The median is marked somehow.  The “whiskers”
are two lines coming out of the box and going out to
cover the range of most of the data, up to 1.5 times the
interquartile range in each direction.  A few outlying
points are plotted individually.

Figure 6.45 shows a box plot of the group T data
from Example 6.13 generated using the STATISTICA
(1995) software.  The median is marked by a small
square in the box.  The software documentation does
not give a precise definition of the difference be-
tween an outlier and an extreme point.  Also, this
release of the software seems to have a small bug,
in that the maximum (excluding outliers) is labeled
as 11, when it should be 118.

Non-Outlier Max = 11
Non-Outlier Min = 4

75% = 95
25% = 17

Median = 42.5
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Figure 6.45  One form of a box plot.  The box shows
the lower and upper quartiles, with the median
marked.  The whiskers show most of the range, from
4 to 118, and individual outlying points are plotted.

Figure 6.46 shows the same box plot as drawn by a
different software package, SAS/INSIGHT (1995).
As before, the box shows the lower and upper quar-
tiles, and the median is marked, this time with a
stripe.  Points beyond the whiskers are shown as
individual dots.

Box plots were invented by Tukey (1977), and are still
being modified according to individual taste.  Any form
of the plot that is produced by a convenient software
package is probably adequate.
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Figure 6.46  A different style box plot of the same
data.  The box shows the upper and lower quartiles,
with the median indicated by a stripe.  The whiskers
show much of the range, with dots marking outliers.

The example here is typical, in that the data are skewed,
and the most obvious feature of the box plots given here
is the long distance from the box to the largest value.
Box plots are supposed to focus on the bulk of the data,
with only moderate attention given to the extremes.
Therefore, there are visual advantages to transforming
skewed data by taking logarithms.  Therefore, all the
remaining box plots shown in this section will use
log10(recovery time) instead of the raw times. 

Figure 6.47 shows side-by-side box plots of the three
data subsets in Example 6.12.  Incidentally, the box
plot of log(time) is different from the box plot of time
plotted on a logarithmic axis — the logarithms of
large times tend not to be considered as outliers.
This can be seen by comparing Figure 6.45 with the
group-T portion of Figure 6.47.
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Figure 6.47  Side-by-side box plots of the three
groups of data from Table 6.16, based on
log10(recovery time).

Figure 6.47 shows that group P seems to have
somewhat longer recovery times than the other
groups.  There seems to be little difference between
groups S and T.  Tests will be given below to investi-
gate whether  this visual impression is correct.
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6.6.2.1.2 Statistical Tests

Tests Based on Normality.  Warning: these tests are
only valid if normality or lognormality can be assumed.
If each data subset corresponds to a lognormal distribu-
tion, work with X = log(T).  Either natural logs or base-
10 logs can be used, because log10(T) = ln(T)/ln(10), so
both are normally distributed if either is. 

When X has a normal distribution, standard tests based
on normal theory can be used, as given in many statistic
books.  These tests investigate whether :, the mean of
X, is the same in each data subset, under the assumption
that the variances are the same.  For added sophistica-
tion, tests of equality of the variances can also be
performed:

• To compare the means of two data subsets, per-
form a Student’s t test.

• To simultaneously compare the means of two or
more data subsets, perform a one-way analysis of
variance test.

• To compare the variances of two data subsets,
perform an F test.

• To compare variances of two or more data subsets,
use some version of a likelihood ratio test, such as
Bartlett’s test or a Pearson-Hartley test, as dis-
cussed by Bain and Engelhardt (1992, p. 426).

These tests are not considered further here, because
they rely heavily on the assumption of normality.  This
is especially true of the tests later in the list.  Most
statistical software packages will perform these tests.
The analyst must ask whether the assumption of nor-
mality is established well enough to justify the use of
the tests.

Nonparametric Tests Based on Ranks.  For general
use when normality or lognormality is not well estab-
lished, nonparametric tests are preferable.  The books
by Conover (1999) and Hollander and Wolfe (1999) are
excellent summaries of standard tests.  As before, let X
= log(T), but do not assume that X has a normal
distribution or any other particular distribution.  Tests
for location assume that various data subsets have
distributions that are shifted sideways from each other.
The shapes are the same, but the medians may be
different.  This is the nonparametric analogue of
assuming that the distributions are normal with a
common variance, but possibly different means.  Tests
for dispersion assume that the shapes are the same, but
possibly with different location and scale parameters.
This is the nonparametric analogue of assuming normal
distributions with possibly different means and vari-
ances.

To test equality of two medians against a shift alterna-
tive, use the Wilcoxon-Mann-Whitney test.  This test
was introduced in Section 6.3.3.2.2.  In the present
context, let W denote the sum of the ranks of times for
the first data subset, when all the times are considered
together.  The ranks are the same whether or not the
logarithmic transformation is performed.

For example, to compare group P to group S in
Example 6.12, arrange all 70 times from the two
groups in ascending order, and mark the times
corresponding to group P.  The smallest time from
group P is 6 minutes.  This has rank 12, because it
is preceded by 11 values in group S from 2 to 5
minutes.  The other ranks are found similarly.  Ties
are handled by assigning the average rank to all tied
values.  The rest of the test was explained in Section
6.3.3.2.2.  It is not detailed here, because the test is
normally performed by a computer.

To test whether two or more data subsets can be
pooled, the test of choice is the Kruskal-Wallis test.  It
tests whether the distribution of T is the same in all the
data subsets, against the alternative that the distribu-
tions have the same shape but different medians.  The
test is based on a sum of ranks for each data subset.
Those who want details can look in Conover (1999) or
Hollander and Wolfe (1999); everyone else can just let
the computer do the test.

When the Kruskal-Wallis test is applied to all three
groups in the data of Example 6.12, it rejects equality
of the distributions with p-value 0.026.  This is
consistent with the graphical comparison in Figure
6.47 — clear evidence of a difference, though not
extreme overwhelming evidence.  Based on these
analyses, Atwood et al. (1998) dropped group P from
the analysis of durations, and combined groups S
and T.  Group P consists of LOSP durations when
the plant remained at power throughout the event.
The authors comment on reasons why plant person-
nel might be very deliberate in restoring offsite power
while the plant is still up and running.

To test for equality of dispersion of two data subsets,
the rank-like test of Moses is recommended.  This
requires splitting each data subset into two or more
parts, and so is not suitable for very small data sets.
See Hollander and Wolfe or documentation of a statisti-
cal software package for details for applying this test.

A well-known nonparametric test has not been devel-
oped for testing equality of dispersion of more than two
data subsets.  Therefore, graphical comparisons, such as
side-by-side box plots, should be an important part of
the analysis.
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Nonparametric Test Based on EDFs.  A well-known
test for comparing two data subsets is the two-sample
Kolmogorov-Smirnov test.  It is based on comparing
the empirical distribution functions for the two data
sets.  The test statistic is 

D F t G tt= −max [| $ ( ) $ ( )|]

where  and  are the empirical distribution$ ( )F t $ ( )G t

functions from the two data sets.  Many software
packages can perform this test.

6.6.2.2 No Time Trend

This section will be illustrated by an extension of
Example 6.12, taken directly from Atwood et
al. (1998).

Based on the above type of analysis of Example
6.12, the LOSP study (Atwood et al. 1998) pooled
the data from groups S and T, but excluded group P.
That report also combined common-cause pairs of
events at multiple units into single site-events (one
pair of shutdown events, two pairs of trip events, and
two pairs that involved a shutdown reactor and a
reactor that tripped).  This gave a total of 102 site
events instead of the 107 in Example 6.12.  They are
sorted by event date and listed as Example 6.13.
Times are in minutes, and dates are MM/DD/YY.

6.6.2.2.1 Graphical Methods

One natural way to examine the data for a trend is
through a scatter plot of the observed values against
calendar time.  Often, as in Example 6.13, a few large
values are outliers.  They will determine the scale of the
vertical axis.  Compared to those large values most of
the other values are very small, hugging the horizontal
axis.  In such a case, the observed values should be
transformed, typically by taking logs.

Figure 6.48, from the LOSP study (Atwood et al.
1998), shows a plot of log10(recovery time), for the
data of Example 6.13.  Visually, any trend in time
appears to be very slight.  The section below, which
considers statistical tests, will re-examine this exam-
ple.

A potentially more helpful plot is a cumulative plot of
recovery time against chronological sequence.  The
vertical axis shows cumulative recovery time, that is,
cumulative duration of LOSP events.  No logarithmic
transformation is made, because a sum of durations is
easy to interpret, but a sum of log(duration) is harder to
interpret.  Also, logarithms can be negative, so a cumu-

lative plot of logarithms would not necessarily be
monotone.

Example 6.13 LOSP recovery times and event
dates.

   4   04/22/80
 106   06/03/80
  62   07/15/80
 120   01/16/81
  14   02/01/81
  15   04/27/81
  10   12/23/81
  29   06/22/82
  17   04/26/83
  11   10/04/83
 163   10/08/83
 240   11/14/83
  97   01/08/84
  90   02/12/84
  15   02/16/84
   2   02/28/84
   5   05/03/84
   2   06/04/84
 120   06/05/84
  20   07/16/84
  11   07/26/84
  10   08/01/84
  20   08/21/84
  22   08/24/84
   3   10/22/84
  14   11/16/84
  15   12/19/84
 335   04/29/85
  43   05/07/85
   5   08/16/85
  73   08/28/85
  25   10/03/85
  13   10/07/85
  60   10/22/85

   3.5 11/21/85
   4   11/21/85
  20   12/12/85
  46   01/01/86
 100   01/28/86
  12   07/19/86
 155   03/05/87
  37   03/21/87
   4   04/04/87
 388   07/14/87
 118   07/23/87
   2   08/17/87
  53   09/11/87
  29   09/16/87
  17   10/14/87
  59   10/16/87
   4   11/17/87
   8   06/24/88
  38   07/17/88
  24   07/29/88
  14   08/13/88
  95   10/16/88
  19   10/25/88
   9   12/26/88
  45   03/25/89
  90   03/29/89
  29   05/14/89
  60   06/16/89
  90   06/17/89
   2   06/29/89
  45   01/16/90
  14   02/26/90
 140   03/20/90
  37   07/09/90

  40   02/11/91
 240   03/07/91
  67   03/13/91
  29   03/20/91
  60   03/21/91
 277   04/23/91
  24   06/15/91
  60   06/22/91
  20   06/27/91
  11   07/24/91
   4   10/20/91
  77   01/29/92
  20   03/23/92
  20   03/27/92
  35   04/02/92
  10   04/28/92
   6   05/03/92
 454   08/22/92
  57   10/19/92
  95   12/31/92
 136   04/08/93
  37   05/19/93
  12   06/22/93
   3   06/26/93
  10   09/10/93
  15   09/14/93
  12.5 10/12/93
  96   12/27/93
   2   05/21/94
1675   11/18/94
 132   02/27/95
 917   10/21/95
 127   01/20/96
 330   02/06/96

    1/1/80     1/1/84     1/1/88     1/1/92     1/1/96
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Figure 6.48  Log10(recovery time) plotted against
event date, for data from groups S and T in Example
6.13.

If the horizontal axis shows event date, the slope of the
curve represents average LOSP duration per calendar
time.  If, instead, the horizontal axis shows event
sequence number, that is, the cumulative number of
events, then the slope represents average LOSP dura-
tion per event.  The latter is more meaningful in a study
of durations.



Parameter Estimation and Model Validation

6-67

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90 100 110

Cumulative number of events

C
um

ul
at

iv
e 

du
ra

tio
n 

(m
in

.)

GC99 0292 24

Figure 6.49  Cumulative duration of LOSP events
versus cumulative number of events.

Finally, a diagonal line, connecting the origin to the
final point, provides a reference guide, so that the eye
can better judge the straightness of the plot.

Figure 6.49 shows the cumulative duration plot for
the data of Example 6.13.

The cumulative plot clearly departs from the diagonal
straight line, because of two large duration times
near the right of the plot.  The LOSP report mentions
that one of those two times is conservatively large.
The LER narrative states that recovery could have
been performed earlier, but it does not give an
estimated possible recovery time.  The LOSP report
used times when recovery would have been possi-
ble, when such times were available, but for this
event the report was forced to use the actual recov-
ery time.

In Figure 6.49, a second dashed line connects the
origin (0, 0) to the 97th point, just before the first of
the two large jumps.  The cumulative plot stays close
to this line until the large recovery times occur.
Thus, any “trend” is the result, not of a gradual
increase in recovery time, but of a couple of outlying
values, one of which is conservatively large.  Figures
6.48 and 6.49 both reveal the two large recovery
times.  In this example, however, the cumulative plot
seems more informative than the scatter plot, be-
cause the log-transformation in Figure 6.48 makes
the large times appear less dramatic.

6.6.2.2.2 Statistical Tests

Test Based on Normality.  Using the method of least
squares fitting, data from a scatter plot may be fitted
with a straight line.  Most software packages then test

of the hypothesis that the slope is zero, assuming
normally distributed scatter around the line.

The cited LOSP report fitted a straight line to the
data in Figure 6.48 using the least squares method.
The trend was reported as statistically significant at
the 0.03 level.

This conclusion of a statistically significant trend
seems surprising, based on the minimal apparent
trend in the figure.  The report authors did not have
the insights given by the cumulative plot, but they
critiqued the calculation in several ways:

• The calculation assumes that log(T) is normally
distributed around the trend line.  The lognormal
distribution (without modeling a trend) was found
to fit the data well, and the scatter plot appears
consistent with normality.  Therefore, the calcu-
lated p-value of 0.03 is close to correct.

• The evidence for the trend was very sensitive to
the two values in the upper right of the figure.
Dropping either value raised the p-value to 0.08.
Further, one of those values was known to be
conservatively high, as discussed above.  This
means that the trend may in part be an artifact of
the data coding.

• The magnitude of the trend is small.  A linear
trend in the mean of log(T) corresponds to an
exponential trend in the median of T.  The mag-
nitude of this trend is a factor of 3.6 over the 17
years of the study.  This is fairly small from an
engineering viewpoint.

• No solid engineering reasons were found to
explain the trend.

Section 6.2.3.1.2 of this handbook discusses how test
results should be interpreted.  It states that calculation
of a p-value is only part of the analysis, and should be
followed by critical thinking.  The above bulleted list of
considerations illustrates that kind of thinking.  Use of
a cumulative plot would have helped the report authors
even more, revealing that a smooth trend of any kind is
inappropriate.  The authors of the LOSP study chose
not to model a trend, but recognized that additional data
might change this decision.

Nonparametric Test.  A test for a trend that does not
assume normality is easy to construct.  Such a test is
necessary if normality cannot be assumed.  If normality
can be assumed, the nonparametric test is less powerful
for detecting a trend, because it ignores available infor-
mation, that the data are normally distributed.
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Figure 6.50  Histogram of data from Table 6.19, with
multiple of lognormal density overlaid.  The skewness
makes goodness of fit difficult to assess.
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Figure 6.51  Histogram of ln(time), with a multiple of
a normal density overlaid.  Fit appears as good as
achievable without using a bimodal distribution.

The test is the Wilcoxon-Mann-Whitney test, first
introduced in Section 6.3.3.2.2.  To apply it here,
arrange the times sequentially, in order of their event
dates.  Count an event as A if it is above the median and
as B if it is below the median.  Discard any values that
equal the median.  Now carry out the Wilcoxon-Mann-
Whitney test based on the ranks of the As in the se-
quence of all the events.  Because this test is based only
on comparisons to the median, it is the same whether or
not logarithmic transformations are used.

When this was done with the data from Example
6.13, the median duration was 29.  The first duration
in Example 6.13 was a B, the next three were A, and
so forth.  In all, there were 48 As and 50 Bs.  The As
had higher average rank than the Bs, suggesting an
upward trend, but the p-value was 0.09, not quite
statistically significant.  The nonparametric test is not
as sensitive as the parametric test for detecting the
small trend, in part because it does not make as
much use of the two extreme values seen in Figure
6.49.  If the normality assumption were not satisfied,
only the nonparametric test would be valid.

6.6.2.3 Goodness of Fit to Parametric Models

One way to model recovery times and other durations
is to model the distribution of the durations by some
parametric distribution, such as lognormal, Weibull,
etc.  One must then check to see if the data fit this
proposed model well.  This section gives graphical
methods and statistical tests for such investigations.

6.6.2.3.1 Graphical Methods

The basic idea is to compare nonparametric estimates,
which come directly from the data, with estimates based
on the fitted model under consideration.  For example:

• Compare the histogram to the density from the
fitted model.

• Compare the EDF to the c.d.f. of the fitted para-
metric model.  Equivalently, compare the empirical
reliability function (1 minus the EDF) to the fitted
reliability function.

• Compare the quantiles of the data to the quantiles
of the fitted distribution.  This plot is called a
quantile-quantile plot, or a Q-Q plot.  Q-Q plots
have become very popular for assessing goodness
of fit, although they take getting used to.

These three comparisons are illustrated below, using
the data of Example 6.13, and an assumed lognor-
mal distribution.  First, the fitted distribution is found
by taking natural logarithms of the recovery times,
and estimating the mean and variance of their

distribution.  The estimated mean is 3.389 and the
estimated standard deviation is 1.434.  The ln(time)
values are modeled as normally distributed with this
mean and variance.  The raw times have the corre-
sponding lognormal distribution.

Figure 6.50 shows the histogram density  with a fitted
lognormal density overlaid.  Because this distribution
is concentrated at small values, the goodness of fit is
difficult to judge.  Therefore, the histogram of the
ln(time) values are also plotted, with a normal density
overlaid, in Figure 6.51.  Actually, the area under the
histogram equals the number of observations, and
the density has been rescaled to have the same
area.

Figure 6.52, from the LOSP report, shows a plot of
the reliability function, 1 minus the EDF, with the
corresponding fitted function, 1 minus the lognormal
c.d.f.  The plot in this form is useful for interpreting
the degree to which the fitted c.d.f. differs from the
empirical c.d.f., because the horizontal axis is in
units of time.  A plot in terms of log(time) would not
hug the axes so closely.  Therefore, discrepancies
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Figure 6.54  Quantile-quantile plot of raw recovery
times against fitted normal distribution.  The strong
curvature indicates bad fit.

between the curves would be more visible, but their
magnitudes would be harder to interpret in real-world
terms.

Figure 6.52  Empirical and theoretical reliability
functions, where the reliability function is defined as
1 minus the c.d.f.

Finally, Figure 6.53 gives a quantile-quantile (Q-Q)
plot, described by Wilk and Gnanadesikan (1968).  If
only one plot could be used, a Q-Q plot would be a
strong contender.  A Q-Q plot compares two distribu-
tions by plotting the quantiles of one against the corre-
sponding quantiles of the other.  If X is a linear function
of Y, X = a + bY, then a Q-Q plot of X versus Y will be
linear.  The parameters a and b do not need to be
known or estimated; linearity of the plot tells the analyst
whether the two distributions are the same except for a
linear transformation.  Users of probability paper will
recognize that a plot on probability paper is a form of a
Q-Q plot.  

Theoretical normal quantile

O
bs

er
ve

d 
ln

(r
ec

ov
er

y 
tim

e)

.01 .05 .1 .25 .5 .75 .9 .95 .99

0

1

2

3

4

5

6

7

8

9

-3 -2 -1 0 1 2 3

Figure 6.53  Quantile-quantile plot of ln(recovery
time) and fitted normal distribution.  The points fall
nearly on a straight line, indicating good fit.

In Figure 6.53, the software package implemented
the Q-Q plot by plotting the ordered values of ln(time)
against the theoretical expected values of the corre-

sponding order statistics assuming normality.  For
example, denote ln(t) by y.  In the implementation of
this particular software package, the ith ordered
value, y(i), is plotted against the expected value of Z(i),
assuming that 102 values of Z are randomly sampled
from a standard normal distribution.  The points
follow a straight line.  This indicates that the data are,
apparently, normally distributed.

The parameters, : and F, can be ignored in a Q-Q plot
based on the normal distribution, because a normal
random variable Y with mean : and standard deviation
F is related to Z by Y = : + FZ.  This is a linear trans-
formation, and so does not change the linearity or
nonlinearity of the plot.  In fact, it is not even necessary
to obtain estimates of : and F.  For distributions other
than normal, the parameters may need to be estimated
before the Q-Q plot can be constructed.

The expected values of the order statistics cannot be
constructed without tables or a computer program.
Users of probability paper may construct a simpler
version, plotting y(i) against the i/(n+1) quantile of a
standard normal distribution.  Here n is the total number
of observations, 102 in the present example.  This
simpler version gave its name to the plot, a quantile-
quantile plot.

For the purpose of illustration, Figure 6.54 gives a Q-
Q plot of the same example data, assuming that the
raw recovery times have a normal distribution.  Of
course the fit is horrible — no one expects the raw
times to have a normal distribution.  This lack of fit is
shown by strong curvature in the plot.  The two
largest times show the lack of fit most emphatically,
but even without them the plot appears to show a
curvature that indicates non-normality.
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Figure 6.55 Q-Q plot for checking exponential
distribution in Example 6.6.

The particular form of the distribution can sometimes
allow special tricks.  Let us leave the present example,
and consider investigating whether data t1, ..., tn come
from an exponential distribution.  Example 6.6, which
was deferred from Section 6.2.3.4, will be used to
illustrate the method.

The idea of the Q-Q plot is that, when the data come
from the assumed distribution, then 

t(i) . F!1[i/(n+1)],

where F!1 is the inverse of the assumed c.d.f.  Let us
find the inverse of the exponential c.d.f.  Set

y = F(t) = 1 ! e!8t .

To find the inverse, solve for t = F!1(y):

e!8t = 1 ! y

and therefore

t = !ln(1 ! y)/8 .

The right-hand side is F!1(y), so the defining relation of
the Q-Q plot is 

t(i) . !ln[1 ! i/(n+1)]/8 .

Thus, a plot of the ordered times against !ln[1 !
i/(n+1)] should be approximately linear, regardless of
the value of 8.  The linearity or nonlinearity of the plot
does not depend on whether 8 has been estimated well.
Nonlinearity is evidence against the assumed exponen-
tial distribution. 
 
Example 6.6 contains times between LOSP events,
which should be exponentially distributed.  A plot of
the ordered times against !ln[1 ! i/(n+1)] is shown in
Figure 6.55.  Because the plot does not show much
curvature, it indicates good fit to the exponential
distribution.

6.6.2.3.2 Statistical Tests

The previous section used graphs to investigate whether
data followed a certain kind of distribution.  The
present section gives statistical tests of hypotheses, for
investigating the same question.  The tests here are
called goodness-of-fit tests, because they are intended
to test whether the data fit the assumed model well.
The null hypothesis is that the data come from a distri-
bution of the assumed form, for example, from a
lognormal distribution.  The null hypothesis does not

specify the parameters.  Therefore, the null hypothesis
includes a family of distributions.  The alternative
hypothesis is that the data come from some other
distribution.

As always, remember that “acceptance” of the null
hypothesis does not provide evidence that the null
hypothesis is true.  It merely indicates a lack of evi-
dence that the null hypothesis is false.  For example, the
data may be consistent with a lognormal distribution,
and also consistent with a gamma distribution and a
Weibull distribution.  In such a case, the analyst should
not make assertions that are highly dependent on the
form of the distribution.  For example, a sample of 10
observations may be consistent with many possible
distributions.  An estimate of the 99.9th percentile of
the distribution would be a large extrapolation from the
actual data, highly dependent on the assumed form of
the distribution.  A confidence interval on this percen-
tile would be even worse, because it would give an
appearance of quantified precision, when in reality the
distribution could have practically any form out in the
tail.

In summary, even though a model has been “accepted,”
it is only an approximation.  The analyst should not
make assertions that are sensitive to small departures
from the model.

Chi-Squared Test.  The chi-squared test, seen in
Sections 6.2 and 6.3, is also an all-purpose goodness-
of-fit test.  To apply it in the present context,  estimate
any unknown parameters of the hypothesized distribu-
tion of T.  Based on these parameter estimates, divide
the time axis into c bins of equal probability.  The letter
c stands for cell, another term for a bin in this context.
Based on the recommendations of Moore (1986),
choose the number of bins so that  n/c is at least 1, and
preferably at least 2.  Let xi be the observed number of
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values of T in the ith bin.  Because the bins have equal
probability, the expected number of values of T that will
fall in any bin is n/c, the number of observations
divided by the number of bins.  The Pearson chi-
squared statistic is 

X2 = Ej(xj ! ej)
2/ej   ,

where each ej equals n/c and each xj is an observed
count.

If the null hypothesis is true, the distribution of X2 is
approximately chi-squared.  The commonly quoted rule
is that the degrees of freedom is c ! 1 ! p, where p is
the number of estimated parameters.  For example,
suppose the null hypothesis is that the distribution of T
is lognormal, or equivalently, that ln(T) is normal.
Then two parameters must be estimated, : and F.  Thus,
the commonly quoted rule for the degrees of freedom is
c ! 3.  In fact, researchers have found that this is not
quite correct, for subtle reasons described by Moore
(1986, Section 3.2.2.1).  The correct degrees of free-
dom are somewhere between  c ! 1 ! p and  c ! 1.  The
exact value depends on the form of the distribution in
the null hypothesis.

Let us apply this to the LOSP-recovery data from
Example 6.13, and use X = ln(T) for convenience.
Let H0 be the hypothesis that X is normally distrib-
uted.  As mentioned above, the estimates of  : and
F are 3.389 and 1.434.  With 102 observations, it is
convenient to take 50 bins, so that each expected
count is 102/50 = 2.04.  The bin boundaries are the
0.02, 0.04, ..., 0.98 quantiles of the distribution.
These are estimated as

yq = 3.389 + 1.434zq ,

where q is 0.02, 0.04, etc., and zq is a quantile
interpolated from a table of the standard normal
distribution.  For example, z0.02 = !2.054.

When this is carried out, using a computer to perform
the calculations, the value of X2 is 63.69.  The
distribution under H0 is chi-squared with degrees of
freedom between 47 and 49.  Therefore, the p-value
is between 0.053 and 0.077.  The test almost rejects
normality of ln(T) at the 0.05 level, in spite of the
graphical evidence to the contrary.

Upon examination, the test is revealed to be too
powerful for its own good.  It notices that the values
tend to cluster, five occurrences of 2 minutes, six
values of 20 minutes but no values of 21 minutes,
etc.  With 50 cells, each observed time is commonly
the sole occupant of a cell.  The test notices that the
numbers have been rounded to convenient times,

such as 20 minutes, and uses this as evidence
against normality.  In fact, such clustering is a depar-
ture from normality, and from any other continuous
distribution.  But it is not the kind of departure that is
of interest to most analysts.

A coarser binning, into fewer cells, would not be
distracted by fine clustering, and would search for
more global departures from the null hypothesis.

We conclude this discussion of the chi-squared test by
considering again the exponential example that was
deferred from Section 6.2.3.4.

Example 6.6 consists of 25 times.  The null hypothe-
sis is that the data come from an exponential distri-
bution.  The unknown 8 is estimated as the number
of events divided by the total observation period,
25/(2192 days) = 0.0114 events per day.  This MLE
is justified based on the Poisson count of events, as
in Section 6.2.1.1.  To obtain a moderate expected
count in each bin, let us use ten bins.  They have
equal estimated probabilities, 0.10 each, if they run
from

0 days to [!ln(0.9)]/0.0114 = 9.24 days
9.24 days to [!ln(0.8)]/0.0114 = 19.57 days
...
201.89 days to infinity.

These calculations are all based on the exponential
c.d.f., F(t) = 1 - exp(!8t).  Setting F(t) to 0.1, 0.2, and
so forth gives the bin boundaries.

There are four observed times in the first bin, two in
the second, and so on.  The expected count in each
bin is 25/10 = 2.5.  The calculated value of X 2 is
9.00.  This must be compared with the percentiles of
the chi-squared distribution.  There are c = 10 bins,
and p = 1 estimated parameter.  Therefore, the
degrees of freedom are between 10 ! 1 = 9 and 10
! 2 = 8.  The value 9.00 is in the middle of both of
these distributions, the 56th percentile of one and the
66th percentile of the other.  Therefore, the chi-
squared test finds no evidence against the exponen-
tial distribution.  This agrees with the earlier graphical
analysis.

Shapiro-Wilk Test for Normality.  Many software
packages offer the Shapiro-Wilk test for normality.  It
is based on obseving how closely the order statistics
follow theoretical normal values, as displayed for
example in Figure 6.53.  For testing the normal distribu-
tion, the Shapiro-Wilk test is one of the most powerful
tests against a wide variety of alternatives.  Details are
not given here, because all the calculations are carried
out by the computer.
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With the logarithms of the data of Example 6.13, the
Shapiro-Wilk test does not reject normality of ln(T),
giving a p-value of 0.34.  This agrees with the visual
evidence of Figure 6.53.

Tests Based on the EDF.  Several families of tests
have been proposed based on the empirical distribution
function (EDF, defined in Section 6.6.1.1.3).  The idea
is to reject the null hypothesis if the EDF is not “close
to” the theoretical c.d.f.  Closeness can be measured in
various ways, giving rise to a variety of tests.  EDF-
based tests are appealing because they do not require a
choice of bins, but simply use the data as they come.

The most famous such test is the Kolmogorov test, also
known as the Kolmogorov-Smirnov test.  It is described
in Appendix B.3.4.  This test differs from the similarly-
named test in Section 6.6.2.1.2 because the present test
asks whether a random variable has a certain distribu-
tion, and the earlier test asks if two random variables
have the same distribution.  These are slightly different
questions.  The test here rejects H0 if

max | $ ( ) ( )|F t F t−

is large, where the maximum is over all values of t.
Here, any unknown parameters in F must be estimated;
the effect of this estimation is typically ignored.

When SAS (SAS Version 8, 2000) performs the
Kolmogorov test of lognormality on the times in
Example 6.13, it gives a p-value > 0.15.  That is, it
does not calculate the exact p-value, but it does
report that the departure from lognormality is not
statistically significant.

The Cramér-von Mises test and the Anderson-Darling
test are other EDF-based tests, designed to remedy
perceived weaknesses in the Kolmogorov test.  The
Cramér-von Mises test is based on

.[ $ ( ) ( )] ( )F t F t f t dt−∫ 2

Here, F is the distribution that is assumed under the null
hypothesis, and f is the corresponding density.  Thus,
the Kolmogorov test looks at the maximum difference

between and F, while the Cramér-von Mises test$F
looks at an average squared difference.  The Anderson-
Darling test is based on 

.{ }[ $ ( ) ( )] / { ( )[ ( )]}F t F t F t F t dt− −∫ 2 1

This division by F(t)[1 ! F(t)] gives greater weight to
the tails of the distribution, where departures from F is
most likely to occur.  Thus, this test is intended to be
more powerful than the Cramér-von Mises test against
common alternative hypotheses.  Many  statistical
packages perform one or more of these tests.

When testing lognormality of the data in Example
6.13, SAS reports a p-value of >0.25 for the Cramér-
von Mises test and also for the Anderson-Darling
test.  Just as for the Kolmogorov test, SAS does not
compute the exact p-value, but it does report that the
departure from lognormality is not statistically signifi-
cant.

6.6.2.4 Consistency of Data with Prior in
Bayesian Parametric Estimation

The issue here is whether the data are consistent with an
assumed informative prior distribution for the unknown
parameters.  If a noninformative prior distribution is
used, then the question does not arise, because the
noninformative distribution is supposed to be consistent
with anything.

6.6.2.4.1 Exponential Durations

A quantitative approach is possible when T has an
exponential(8) distribution.  In this case all the informa-
tion of interest about 8 is contained in Gti, as seen in
Section 6.6.1.2.2.  Therefore, we can compare Gti to
what would be expected based on prior belief about 8.

If Gti is surprisingly large or surprisingly small, that is,
if Gti is in either tail of the distribution of GTi, then the
prior distribution is questionable.  The value Gti is in
the lower tail if Pr(GTi < Gti) is a small probability, and
in the upper tail if  Pr(GTi > Gti) is a small.  To be
specific, consider the upper tail.  The relevant probabil-
ity is 

Pr(GTi > Gti) = IPr(GTi > Gti | 8) fprior(8) d8 . (6.25)

The inner conditional probability can be evaluated by
using the fact that the distribution of GTi , given 8, is
gamma(n, 8). If the prior distribution of 8 is not conju-
gate, the integral in Equation 6.25 must be evaluated
numerically, just as in Sections 6.2.3.5 and 6.3.3.4:
either (a) compute the integral using numerical integra-
tion, or (b) generate a random sample of 8 values from
the prior distribution, find Pr(GTi > Gti | 8) for each
such 8, and find the average of these probabilities as the
overall probability. 

Treatment of the lower tail follows the same pattern.
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If the prior distribution of 8 is conjugate, that is,
gamma(", $), then Equation 6.25 simplifies.  By
working out the integrals it can be shown that GTi/(GTi

+ $) has a beta(n, ") distribution.  Equivalently, $/(GTi

+ $) has a beta(", n) distribution.  These are marginal
distributions corresponding to Equation 6.25, from
which 8 has been integrated out.  Therefore, if Gti /(Gti

+$) is in either extreme tail of a  beta(n, ") distribution,
or equivalently, if $ /(Gti +$) is  in either extreme tail of
a beta(", n) distribution, then the gamma(", $) prior
distribution is questioned.

In Example 6.12, suppose that the only events of
interest are those in the group of S (shutdown)
events.  Suppose also that the times are assumed to
be exponential(8) – the realism of that assumption is
not the subject of the present investigation.  Finally,
suppose that 8 is assigned a gamma(2, 30) prior
distribution, roughly equivalent to two prior observed
times with total duration of 30 minutes.  The shape
parameter of only 2 means that the prior is not very
informative, so we expect the data to be consistent
with it, unless 30 minutes is very unrealistic.

From Table 6.15, we find n = 62 and the total of the
durations is 62×92.3 = 5722.6.  The beta tables in
Appendix C assume that the first beta parameter is
smaller than the second, so it is convenient to work
with the beta(2, 62) distribution rather than the
beta(62, 2) distribution.  Therefore, we ask if

30/(5722.6 + 30) = 5.2E!3 

is in either tail of a beta(2, 62) distribution.  Table C.5
shows that the 5th percentile of the beta(2, 62)
distribution is roughly 6E!3 (it is an interpolation of
7.01E!3 and 3.53E!3 in the table).  Table C.6 shows
that the 2.5th percentile is roughly 4E!3.  So the
observed value is somewhere between the 2.5th and
5th percentiles of the predictive distribution.  This
means that the prior may need rethinking.  It should
either be modified or it should be justified more
carefully.  (In the present example the prior came out
of thin air, but the real difficulty is that the durations
are not really exponential – the whole exercise is
only for illustration.)

6.6.2.4.2 Distributions Having Two or More 
Parameters

When the topic of comparing the data to the prior arose
in connection with estimating 8 or p, there was a single
parameter of interest, and a single observed random
variable that contained all the information of interest for
that parameter.  This random variable was the total
count of initiating events, the count of failures on
demand, or, in the previous section, the total duration.

However, the present subsection considers a distribu-
tion with (at least) two parameters, such as : and F or
" and $.  No single random variable contains all the
information of interest.  Therefore, in such cases it is
simplest to compare the data with the prior by con-
structing:

1. a prior credible region for the two parameters, and
2. a posterior credible region based on noninforma-

tive priors.

The first case shows what the prior distribution says,
and the second case shows what the data say.   Compare
the answers from 1 and 2 to see if the prior distribution
and the data seem consistent, that is, if the prior region
contains most of the posterior region.  Instead of two-
dimensional credible regions, one might calculate
credible intervals for the individual parameters.  This is
simpler, but ignores the possible correlation of the two
parameters.  Because this is such an advanced topic, no
examples are worked out here.

6.6.3 Nonparametric Density Estimation

The most prevalent methods of estimating a density
function are parametric methods.  As described in
Section 6.6.1.2, the density is specified in terms of a
functional form, such as lognormal or Weibull, with
unknown parameters.  The parameters are then esti-
mated  from the data.  However, there also exist
nonparametric methods for estimation of a density
function, some of which are described here. 

The simplest and best known method of estimating a
density function is to construct a frequency table, and
then to plot the histogram.  This method was discussed
in Section 6.6.1.1.4.  Two illustrations are given there,
Figures 6.43 and 6.44.  Both use the 45 recovery times
from part T of Example 6.12.  The methods discussed
below are illustrated with the same set of 45 recovery
times.

6.6.3.1 Smoothing Techniques and Kernel 
Estimators

                    
Smoothing techniques can be motivated by recalling
that the density function, f(t), is the derivative of the
c.d.f., F(t).  The EDF, discussed in Section 6.6.1.1.3

and denoted by , is a natural estimator of F(t).$ ( )F t

Thus, a natural estimator of the density is the differen-
tial quotient using the EDF in place of the c.d.f.,

, (6.26)$ ( )
$ ( ) $ ( )

f t
F t h F t h

h
n =

+ − −

2
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Figure 6.56  Density estimate of the data from group
T in Example 6.12, with rectangular kernel and
bandwidth 25.

Figure 6.57  Density estimate of the data from group
T in Example 6.12 with rectangular kernel and
bandwidth 50.

where h is an increment of the variable t.  The main
problem in applying such an estimator is to choose h
small enough so that the differential quotient adequately
approximates the derivative, but large enough so that
the interval with limits t ± h contains a sufficient
amount of data.

Recall that  equals the number of observations$ ( )F t

having a value less than or equal to t divided by the
total number of observations, n.  Therefore, Equa-
tion 6.26 can also be written as

, (6.27)$ ( )f t
nh

K
t t

hn
i

i

n
=

−
∑ ⎛

⎝⎜
⎞
⎠⎟=

1

1

where K is a function defined as K(u) = 1/2 if u is
between ± 1, and zero otherwise, and ti is the ith obser-
vation.  Notice that an observation ti only enters into
this calculation if (ti ! t)/h is between ± 1, or in other
words if ti is near t; specifically if ti is within h units of
t.  Thus, the estimate is based on averaging values of
1/2 when observations are near t.  This is a special case
of a general type of estimator known as a kernel
density estimator.  The function K(u) is called the
kernel and the increment h is called the bandwidth.
The bandwidth defines a “window”, centered at t and
having width 2h, which contains the data involved in
the estimate at the point t.

6.6.3.1.1 The Rectangular Kernel

When graphed, the kernel corresponding to Equa-
tion 6.27 is a rectangle of height 1/2 and width 2h.  The
resulting estimator is illustrated here with group T of
Example 6.12 and two bandwidths.

Figure 6.56 shows a graph of the estimate of the
density when the bandwidth is h = 25 minutes.
Notice that the estimated density is zero in the
interval roughly from 150 to 250 minutes. This
corresponds to the fourth and fifth bins of the histo-
gram of Figure 6.43, both of which were empty.

It is also evident that the graph is somewhat jagged,
indicating that the bandwidth may be so small that
not enough data are being captured in the window. 

The vertical dashed line marks the point t = 0, to be
discussed later.

Consider now a rectangular kernel estimate with the
same data but with a larger bandwidth, h = 50
minutes.  The results are shown in Figure 6.57.

There is still some jaggedness, but it is somewhat
less than in Figure 6.56.   There is still a noticeable
low point in the vicinity of 200 minutes, but it is
narrower than in Figure 6.56. 

It is clear that by smoothing over a very wide window,
any features can be smoothed out.  For this reason, it is
desirable to give some thought to whether there is some
explanation for low density.  In other words, are these
real effects or are they just due to randomness?  If the
low estimates can be explained by something other than
random fluctuation, smoothing would tend to hide this
fact, but if they are due to randomness, then smoothing
should be helpful.
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Figure 6.58  Density estimate from group T of
Example 6.13, with rectangular kernel and bandwidth
50, forced to be nonzero on positive axis only.

This issue was also seen with histograms.  Choosing too
narrow bins for the size of the data set caused the shape
to be influenced too much by random variation.  Choos-
ing too wide bins smoothed out nearly all the variation.
The question of how much to smooth and how much
roughness to allow is inherent in all forms of density
estimation.

6.6.3.1.2 Boundary Problems

Notice, that as the bandwidth is increased, the interval
over which the estimated density is positive becomes
wider.  This is because the window is picking up more
data as it gets wider.  This causes the anomaly that the
estimated density is positive over negative values of the
t axis, even though t represents a positive variable,
namely recovery time.  The vertical dashed line marks
the point t = 0 in each figure, and the portion of the
density to the left of this line is substantial.  In addition,
although many values of ti are close to zero, the density
estimate decreases as t moves leftward to zero.  Various
methods have been suggested for correcting the esti-
mate at the boundary of the possible region.

Silverman (1986) gives a method that is very easy to
implement.  If the density is allowed to be positive only
for t $ 0, augment the data by reflecting it around 0.
That is, create a new data set that consists of

{..., !t2, !t1, t1, t2, ... } .

Estimate the density based on this data set.  Call this

estimate .  The integral from !4 to 4 of  is
~

( )f t
~

( )f t

1.0, because  is a density.  Also, if the kernel is a~
f

symmetrical function, then is symmetrical around~
f

zero, that is, . Now, define the real
~

( )
~

( )f t f t− =
density estimate by

for t < 0$( )f t = 0

for t $ 0 .$( )
~

( )f t f t= 2

Then, is a density that is zero for negative t and$f

nonnegative for positive t.  It estimates the unknown
true density.

Figure 6.58 shows the resulting estimate with the
data of this section, when the kernel is rectangular
and the bandwidth h = 50.  This estimate can be
compared with Figure 6.57.

For large t, this estimate is very similar to that of
Figure 6.57.  However, it is quite different for t near
zero.  The density is not plotted for t < 0, but it equals
zero there.

The simple method just given forces the density esti-
mate to have slope zero at the boundary.  Those who
want to allow a density estimate with nonzero slope at
the boundary can see Hart (1997, Sec. 2.5).  Techni-
cally, Hart’s book deals with smoothing a scatter plot,
but the method given there can be adapted as follows to
smoothing a density estimate: construct a rough histo-
gram density estimate, place a dot at the top of each
histogram bar (including the bars with height zero!),
and treat those dots as a scatter plot.

6.6.3.1.3 The Triangular Kernel

It may also be desirable in some cases to give less
weight to the data in the extremes of the window and to
produce a smoother graph.  This can be accomplished
by choosing a different function for the kernel.  A very
simple one which does this is the function K(u) = 1!|u|
if u is between ± 1, and zero otherwise.  The graph of
K(u) is an isosceles triangle with a base two units in
width.  This kernel gives more weight to the data in the
middle of the window and less to data at the sides of the
window.  It is also possible, by choosing a kernel func-
tion with a smoother graph, to produce a kernel esti-
mate which is also smoother.  The normal kernel, given
next, is such a smooth kernel.
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Figure 6.59  Density estimate of the data from group
T in Example 6.12, with standard normal kernel and
bandwidth 25.

Figure 6.60  Density estimate of the data from group
T in Example 6.12, with standard normal kernel and
bandwidth 50.

6.6.3.1.4 The Standard Normal Kernel

A kernel function that is often used is the standard
normal kernel, equal to the standard normal p.d.f.,
which is given in Appendix A.7.2.

Figure 6.59 shows the density estimate for the same
recovery time data, but using the standard normal
kernel and bandwidth 25.  The density has been
made positive on the positive time axis only, by the
technique of Section 6.6.3.1.2.

The resulting plot is clearly much smoother than the
ones obtained using the rectangular kernel.  The
increased smoothness is provided by the standard
normal kernel, which is differentiable everywhere.
The low estimate of density near 200 is still present,
but the low spot does not drop to zero as it did in
Figure 6.58.  This is because the standard normal
kernel is always positive.  Even though this kernel
gives less weight to data which are farther from the
center of the kernel, it makes use of every observa-
tion in the data set.  Consequently, with the standard
normal kernel, all terms in the density estimate of
Equation 6.27 are positive, although the extreme
ones will tend to be relatively small.

For the sake of comparison, Figure 6.60 shows the
standard normal kernel estimates for bandwidth h =
50.

Although the graphs shown in Figures 6.59 and 6.60
retain some general features of the graphs in Figures
6.56 through 6.58, they are somewhat smoother.  As
mentioned in the case of the rectangular kernel in

Section 6.6.3.1.1, this type of smoothing is desirable if
the sparsity of data in these intervals is due to random-
ness, but possibly undesirable if there is an explanation
for the sparseness.

6.6.3.2 Choosing the Bandwidth

General guidelines for choosing a kernel and bandwidth
are difficult to formulate.  The choice of a bandwidth
always involves a trade-off between bias and variabil-
ity.   An attempt to reduce bias generally requires a
small bandwidth, but this tends to result in a large
variance.  On the other hand, choosing a large band-
width will reduce the variance, but at the expense of
increasing the bias.  A criterion which accounts for
both the bias and variance is based on a quantity called
the mean squared error (MSE) which is equal to the
mean squared difference between the unknown parame-
ter and its estimator.  It is easy to show that 

MSE = (bias)2 + variance of estimator

so that as the MSE approaches zero, both the bias and
the variance of the estimator also approach zero.

A reasonable choice of bandwidth should take into
account the amount of data, and so the solution must
depend on n.  Thus, we consider a sequence, h = h(n).
The sequence should converge to zero, but not too
quickly or too slowly.  It is known, for example, that
under certain fairly modest assumptions, a desirable
form for the bandwidth is

h(n) = cn!1 / 5 .
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The main problem is that calculation of the constant c
requires more than is typically known about the p.d.f. to
be estimated, and it also depends on the choice of a
kernel.  For example, according to p. 45 of Silverman
(1986), for the standard normal kernel, and assuming
the distribution of the data to be normal with standard
deviation F, the bandwidth which minimizes the inte-
grated MSE asymptotically is 

h(n) = 1.06Fn!1 / 5 .

Notice that the constant c in this case requires that the
standard deviation be known or at least estimated.

For example, with the recovery time data, the sample
standard deviation, given in Table 6.16, is 99.9
minutes.  If this is used to estimate F, then the
optimal bandwidth is h(n) = 105.9n!1/5.  Using the
sample size n = 45 yields  h = 49.5.  This result is
very nearly the bandwidth of 50 minutes that was
used in Figure 6.60.

Keep in mind that this choice of bandwidth was derived
for the case where both the distribution being estimated
and the kernel are normal, so the result would be good
with these assumptions.  However, this might be a good
place to start if trial and error is used to determine what
bandwidth to use.  In other words, if it is not clear what
to assume, then it would be best to try a few different
bandwidths and choose one which provides some
smoothing, but does not obscure basic features.  As
Silverman  says, “There is a case for undersmoothing
somewhat; the reader can do further smoothing ‘by eye’
but cannot easily unsmooth.”

Another problem that often occurs in practice is that the
data will be plentiful in some parts of the range, but
sparse in others.   This is typical with data from highly
skewed distributions.  For example, with a positively
skewed distribution, such as any of the distributions in
Section 6.6.1.2, there will tend to be more data in the
lower end than in the upper tail.  This would suggest the
desirability of having a bandwidth that varies with t, so
that a shorter increment can be used in the lower end
where the data points are more abundant, and a larger
increment used in the upper tail where there are not as
many points.  This idea is not developed here, but such
methods exist.  For additional reading on this topic, see
the discussions of the nearest neighbor method and the
variable kernel method in  Silverman (1986). 

6.7 Unavailability

Data analysis methods for unavailability do not have the
long history that they have for other parameters.  Most
of the material here is taken directly from a paper by

Atwood and Engelhardt (2003).  Users of the methods
described below should refer to the final peer-reviewed
and published version of the article.

As in Section 2.6, the discussion here is presented in
terms of trains, although other hardware configurations,
such as individual components, could be considered.
The terminology of Section 2.6 will be used:  outage
times are random and the unavailability is a parameter,
an unknown constant, denoted here by q.  Subscripts,
such as “planned” and “unplanned,” can be attached to
q for clarity if needed.

Two possible kinds of data are considered:

• Detailed data:  the onset time and duration of each
individual outage are recorded, as well as the total
time when the train should have been available.

• Summary data:  the history is grouped into report-
ing periods, such as calendar months, and the total
outage time and total exposure time are recorded
for each reporting period.

The methods of this section are illustrated with
Example 2.16, taken from Atwood and Engelhardt
(2003).  This example concerns the unavailability of
a train in a two-train CVC system.  The 21 outages
are given in Table 6.17, and monthly summary data
are shown in Table 6.18.  All times are in hours.

6.7.1 Analysis of Detailed Data

Denote the mean duration of an outage by MTTR, an
acronym for mean time to repair.  Similarly, denote
the mean duration of the period between outages (the up
time) by MTTF, an acronym for mean time to failure.
Both of these can be estimated when the individual
outage times and exposure times are recorded.

Under the model assumptions given in Section 2.6.2, it
can be shown (see Ross 1983, pp. 66-67) that the
unavailability equals

 . (6.28)q
MTTR

MTTF MTTR
=

+

This provides a basis for estimating availability and
unavailability when the full duration data are recorded.

Upon reflection, this striking result is not surprising.  If
the data consist of n up times, with n down times
interspersed, MTTR would be estimated by (total down
time)/n, and MTTF would be estimated by (total up
time)/n.  Based on Equation 6.28, the natural estimate
of unavailability would be
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[down-time/n]/[up-time/n + down-time/n]
= down-time/(up-time + down-time) ,

which is just the observed fraction of time when the
system is down.

Table 6.17 Detailed data for Example 2.16.

Month
Train 

Exposure
Train 1 
Outages

Train 2 
Outages

1 364 0 0

2 720 25.23 24.88
75.08

3 744 0 0

4 711 23.45 0

5 621 9.75
0.49
1.24

15.15
1.02
0.49

6 502 0.34
2.90
4.43

4.43
0.34

7     0 0 0

8 637 18.02 12.47
9.48

18.02

9 676 0 0

10 595 0 0

11 600 11.05 0

12 546 0 0

13 745 0 52.25

14 720 0 0

15 744 0 0

Total 8,925  96.90 213.61

In addition, MTTF + MTTR is the mean time from one
outage onset to the next, which can be interpreted as the
reciprocal of the outage frequency.  Therefore, the
unavailability can be rewritten as

q = (outage frequency)
× (mean outage duration) . (6.29)

This equation is the foundation of all the methods for
using detailed data to estimate q.

6.7.1.1 Frequentist Point Estimate

Suppose that n outages are observed in exposure time
texpos, with total outage duration tdur.  Based on Equation
6.29, the simple frequentist point estimate of q is

(n/texpos)×(tdur/n) = tdur/texpos .

Table 6.18 Summary data for Example 2.16.

Month
Train 

Exposure
Train 1 
Outage
Time

Train 2 
Outage
Time

Total 
Outage
Time

1 364 0 0 0

2 720 25.23 99.96 125.19

3 744 0 0 0

4 711 23.45 0 23.45

5 621 11.48 16.66 28.14

6 502 7.67 4.77 12.44

7     0 0 0 0

8 637 18.02 39.97 57.99

9 676 0 0 0

10 595 0 0 0

11 600 11.05 0 11.05

12 546 0 0 0

13 745 0 52.25 52.25

14 720 0 0 0

15 744 0 0 0

Total 8,925  96.90 213.61 310.51

This is the moment estimate, replacing the means in
Equation 6.28 by the sample means.  It is a natural,
intuitively appealing point estimate.

For the data of Example 2.16, either Table 6.17 or
6.18 shows that the estimate of q is 310.51/17850 =
1.74E!2.  (Note, the exposure time of 8925 hours for
a single train must be doubled to get the total train-
exposure-hours for the full data set.)

A confidence interval is not easy to construct.  There-
fore, we leave frequentist estimation and proceed at
once to Bayesian estimation.

6.7.1.2 Bayesian Estimation under Simple
Assumptions

The simplest assumptions are that:

• the outages occur according to a Poisson process
with frequency 8freq, and

• the outage durations have an exponential(8dur)
distribution.

The first assumption is essentially true if the up-times
have an exponential distribution and MTTF >> MTTR.
Then the time from one outage onset to the next is
dominated by the time up, which is exponentially
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Figure 6.61 Q-Q plot for checking whether durations
have exponential distribution in Example 2.16.

distributed.  The parameter 8dur can be interpreted as the
reciprocal of the mean outage duration.  Here, both
parameters have units 1/time. 

The conjugate prior for 8freq can be denoted
gamma("freq,0, $freq,0), as stated in Section 6.2.2.4.1.  The
conjugate prior for 8dur can be denoted gamma("dur,0,
$dur,0), as stated in Section 6.6.1.2.2.  As above, suppose
that n outages are observed in exposure time texpos, with
total outage duration tdur.  The posterior distributions
are

8freq ~ gamma("freq,1, $freq,1)
8dur ~ gamma("dur,1, $dur,1) ,

where

"freq,1 = "freq,0 + n
$freq,1 = $freq,0 + texpos

"dur,1 = "dur,0 + n
$dur,1 = $dur,0 + tdur .

By Equation 6.29 we have

q = 8freq/8dur ,

which is proportional to the ratio of two chi-squared
variables, because the chi-squared distribution is a re-
expression of the gamma distribution.  In addition, it is
reasonable to think that the posterior distributions are
independent; that is, if the outage frequency were to
increase or decrease, this would provide no information
about whether the mean outage duration increases or
decreases.  Therefore, q is proportional to the ratio of
two independent chi-squared variables.  However, the
ratio of two independent chi-squared distributions, each
divided by its degrees of freedom, has an F distribution,
as is shown in many books on statistics and stated in
Appendix A.7.11.  It follows that q is distributed as

($dur,1/$freq,1)("freq,1/"dur,1)F(2"freq,1, 2"dur,1) .

The two quantities in parentheses following the F are
the two parameters of the distribution.  Selected percen-
tiles of the F distribution are tabulated in many statistics
books.  They are not tabulated in this handbook because
they are calculated by many software packages, includ-
ing spreadsheets such as Microsoft Excel (2001) and
Quattro Pro (2001).  Facts about the F distribution are
given in Appendix A.7.11.

If the Jeffreys noninformative priors are used, the
posterior distribution of q is

(tdur/tfreq)[(n+0.5)/n]F(2n+1, 2n) . (6.30)

Table 6.17 shows 21 outages, with a total duration
tdur = 310.51 train-hours, and a total exposure time for
the two trains texpos = 17,850 train-hours.  First, let us
examine the assumptions, and then perform the
calculations.

Section 2.6.2 lists an assumption about the inde-
pendence of durations.  Atwood and Engelhardt
(2003) point out that Table 6.17 shows two instances
when both trains were out for exactly the same
amount of time in the same month.  This is probably
not coincidence, but indication that both trains were
briefly taken out of service together, violating the
independence assumption.  However, the affected
outage time is less than 1% of the total outage time,
so Atwood and Engelhardt feel that the violation of
the assumption is not serious.

Section 6.6.2.3.1 presents a Q-Q plot for checking
whether durations follow an exponential distribution.
The resulting plot for the present outage-duration
data is given as Figure 6.61.

The line is not perfectly straight.  The two largest
times are a bit too large, and there are too many very
small times.  Thus, the true distribution is apparently
more skewed than an exponential distribution.
Nevertheless, we will assume that the exponential
distribution is approximately correct, while recogniz-
ing that the resulting uncertainty intervals are not
exact.

Atwood and Engelhardt use a similar plot to check
the Poisson assumption for the outage count.  More
precisely, they investigate whether the times be-
tween outage onsets are exponential, which they
should be if the outages follow a Poisson process.
The outage onset times are not given in Table 6.17,
but the authors assume that outages are approxi-
mately uniformly spaced in the month in which they
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Figure 6.62 Q-Q plot for examining whether times
between outages are exponential.

occur.  Under this approximation, the times between
outage onsets result in Figure 6.62.

This figure shows the same general curvature as
does Figure 6.61, but with even more curvature,
suggesting that the distribution is more skewed than
an exponential distribution.  Atwood and Engelhardt
recognize this fact but choose to press on with the
analysis anyway.

Informative priors would be easy to use, but for this
illustration we use the Jeffreys noninformative priors,
resulting in a posterior distribution given by Expres-
sion 6.30.  This says that the unavailability q has a
distribution

(310.51/17850)(21.5/21) F(43, 42) . 

The 5th and 95th percentiles of the F distribution with
43 and 42 degrees of freedom are 0.601 and 1.667.
These percentiles are given by many software
packages.  Therefore, the 5th and 95th percentiles of
q are 1.07E!2 and 2.97E!2.  The mean is

(310.51/17850)(21.5/21) (42/40) = 1.87E!2,

using the formula for the mean of an F distribution
from Appendix A.7.11.  As a sanity check, this can
be compared with the simple estimate given in
Section 6.7.1.1, 310.51/17850 = 1.74E!2.

6.7.1.3 Model Validation

If the durations appear to be exponentially distributed,
and the counts appear to have a Poisson distribution,
one may then investigate the other assumptions listed in
Section 2.6.2.  Independence is difficult to verify from
data, and is more likely verified by careful thinking.  As
for the assumption of a common distribution for all the

down times and a common distribution for all the up
times, the methods of Section 6.6.2 can be used: tools
for investigating whether different portions of the data
have different distributions, or whether a trend is
present.  The analyst must decide whether the data set
is large enough to deserve this effort.

6.7.1.4 Bayesian Estimation under Other 
Assumptions

If the outages do not follow a Poisson distribution or if
the durations do not follow an exponential distribution,
Equation 6.29 can still be used, but it is much more
difficult to estimate the two pieces of the equation.
Atwood and Engelhardt (2003) discuss this issue very
briefly.  It will not be considered further here.  Instead,
we proceed now to methods that do not require
assumptions on the forms of the distributions.

6.7.2 Analysis of Summary Data

The task now is to use the summary data only, not the
data from individual outages, to obtain a Bayesian
distribution for q.  The fundamental technique is data
aggregation to yield quantities Xi that are approximately
independent and identically normally distributed, as
described next.  Atwood and Engelhardt (2003) are
unable to prove theoretically that aggregation must
result in normally distributed Xi.  However, they per-
form simulations of representative cases and show that
asymptotic normality occurs in those cases.

For ease of wording, we assume that the reporting
periods are months, as they are in Example 2.16.

6.7.2.1 Data Aggregation

Denote the exposure time for the ith train-month by ei

and denote the corresponding outage time by oi.  The
corresponding simple point estimate of the unavailabil-
ity q is the ratio xi = oi/ei.  This gives one such estimate
of q for each train-month of data.  The estimate from
any one train-month is not very good, because it is
based on only a small data set.  Indeed, if ei = 0 the
estimate is undefined.

The data may contain many zeros, as seen in Table
6.18.  As a result of the many zeros and few relatively
large outage times, the data can be quite skewed.  To
eliminate some of the zeros and make the data less
skewed, the data can be pooled in various ways.  For
example, the rightmost column of Table 6.18 shows the
total outage time for the two trains.  Similarly, the data
could be aggregated by time periods longer than one
month, such as by calendar quarter or calendar year.
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This aggregation over time could be done separately for
each train or for the pooled data from the trains.

This aggregation groups the data into subsets, for
example train-months (the least aggregation), or train-
quarters, or system-months, etc.  Note, we are still
trying to estimate the train unavailability, not system
unavailability, even if we pool the data from both trains
in the system.  Let  oi and ei now denote the outage time
and exposure time for the ith subset.  The simple
moment estimate of q based on the ith subset is xi =
oi/ei.

In the data of Table 6.18, if the two trains are pooled
the total train exposure time for month 2 is e2 = 720
+ 720 = 1440 hrs, and the total train outage time is o2

= 125.19 hrs.  The estimate based on this one month
is 125.19/1440 = 8.69E-2.  If calendar quarters are
pooled but trains are not pooled, the total train
exposure time for Train 1 in quarter 3 is e3 = 0 + 637
+ 676 = 1313 hrs, and the corresponding train outage
time is o3 = 0 + 18.02 + 0 = 18.02 hrs.  The estimate
of q based on this one train-quarter is 18.02/1313 =
1.37E-2.

Whatever level of aggregation is used, this approach
pools the numerators and denominators separately
within each subset and then calculates the ratio.

The purpose of this aggregation is to produce multiple
estimates oi/ei that we denote generically as xi.  The xi

values must all come from a single distribution.  There-
fore, the pooling assumes that the parameter q does not
change within the data set, and that the various subsets
of the data (calendar quarters or years, etc.) have
similar exposure times, so that the random xis all come
from close to the same distribution.

In addition, the distribution of the xis should be approx-
imately normal.  A normal distribution would not
generate repeated values, such as multiple observed
values of zero, nor would it produce strongly skewed
data.  Therefore, we must aggregate enough to obtain
data that are not skewed and do not have repeated
values.

How much aggregation is necessary?  To investigate
this question Atwood and Engelhardt (2003) perform
some simulations, which indicate that minimal aggre-
gation is not enough.  In fact, the example data set
should be many times larger than it is to make the
method work really well.  If an analyst has a large
enough data set so that there is a choice between little
aggregation into many subsets or much aggregation into
few subsets, the second choice is the better one.

Table 6.19, from Atwood and Engelhardt (2003)
gives some sample statistics for x, based on various
amounts of aggregation of the data of Table 6.18.
The skewness is a measure of asymmetry.  Positive
skewness corresponds to a long tail on the right.
Zero skewness corresponds to a symmetrical distri-
bution.

Table 6.19 Sample statistics for estimates of q,
with different levels of aggregation.

Train-
month

System-
month

Train-
quarter

System-
quarter

n 28 14 10 5

Mean 1.63E!2 1.63E!2 1.78E!2 1.78E!2

Median 0.00E+0 4.60E!3 1.38E!2 1.75E!2

St. dev., s 3.07E!2 2.51E!2 1.64E!2 1.16E!2

s/n1/2 5.81E!3 6.70E!3 5.18E!3 5.19E!3

Skewness 2.79 2.02 1.25 0.33

No. zeros 17 7 2 0

The 28 values of x corresponding to train-months do
not come from a normal distribution.  They are too
skewed, as is seen by the fact that the mean
(1.63E-2) is very different from the median (0), and
the skewness (2.79) is far from zero.  Also, they have
many occurrences of a single value, 0.  Pooling the
two trains into 14 subsets somewhat reduces the
skewness and the percentage of zeros.

Pooling the three months for each train makes the
distribution still more symmetrical: the mean and
median are within 30% of each other, and the skew-
ness is down to 1.25.  When the data are aggregated
by pooling trains and by pooling months into quar-
ters, multiple values of zero are finally eliminated,
and the distribution appears to be more nearly
symmetrical: the mean and median are  within 2% of
each other, and the skewness is moderately small.
This suggests that the five values of xi may be
treated as a random sample from a normal distribu-
tion.

To investigate this further, a Q-Q plot was con-
structed, as in Section 6.6.2.3.1.  The plot given by
Atwood and Engelhardt (2003) does not use the
expected order statistics as in Figure 6.53, but
instead is a different version of the plot.  The authors
found it easier to plot the ith order statistic against
M-1[i/(n+1)], where M is the standard normal cumula-
tive distribution function given in Table C.1.  The plot
is shown here as Figure 6.63.
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Figure 6.63 Q-Q plot for investigating normality of x
when trains are pooled and months withing quarters
are pooled.

The points lie almost on a straight line, indicating
consistency with the normal distribution.  For this
reason, the authors treat the x values as coming from
a normal distribution, when the data are aggregated
to this degree.  A goodness-of-fit test could be
performed, but it would not be able to detect non-
normality based on only five points.

As mentioned above, more aggregation would make
the method work better.  However, with the present
very small data set, little more aggregation is possi-
ble.

There is a problem with the third quarter, because it
has smaller exposure time than the other quarters.
That means that x corresponding to this quarter has
larger variance than the others.  This is ignored here,
but if the exposure time for quarter 3 had been even
smaller, we might have dropped that quarter from the
analysis, or pooled differently.

We repeat:  The only purpose of the data aggregation is
to eliminate the skewness and eliminate multiple values,
thus permitting the use of normal methods.  To the
extent possible, we pool so that the aggregated subsets
have similar exposure times, in order to have x values
that come from a common distribution.

6.7.2.2 Frequentist Estimation

The same frequentist estimate of q can be used as with
detailed data, the sum of the outage times divided by
the sum of the exposure times.  This ratio of the sums is
not quite the same as the average of the ratios from the
data subsets, because the various subsets are not based
on the same exposure times.  For example, in Example
2.16 quarter 3 has fewer exposure hours.  Averaging the

ratios for the subsets would treat the data from quarter
3 with as much weight as the data from the other
quarters.  Summing the outage times and exposure
times first, before taking the ratio, gives quarter 3 only
the weight that it should have.

A method to obtain a confidence interval for q uses
facts about normally distributed random variables that
are presented in many statistics books, and summarized
here.

When {x1, ..., xn} is a random sample from a normal(:,
F 2) distribution, the usual estimates of : and F2 are:

x
n

xii
= ∑1

and

 .s
n

x xX ii

2 21

1
=

−
−∑ ( )

(Note the n ! 1 in the denominator, although some
authors use n, and therefore use slightly different
formulas below.)  

The distribution of  is normal(:, F 2/n).  When bothX
: and F 2 are unknown, a 100(1!")% confidence
interval for : is

 , (6.32)x t n s nX± −−1 2 1α / ( ) /

where t1!"/2(n ! 1) is the 1!"/2 quantile of the Student’s
t distribution with n ! 1 degrees of freedom.  For
example, t0.95(n!1) gives a two-sided 90% confidence
interval.  Student’s t distribution is tabulated in Appen-
dix C, and is calculated by some software packages.
Do not misread the (n ! 1) as a multiplier; it is a
parameter, the degrees of freedom, of the Student’s t
distribution.  In Table C.3 each row of the table corre-
sponds to one value of the degrees of freedom.

In Example 2.16, we aggregate by system and
calendar quarter, and use the resulting five values of
x as if they are a random sample from a normal
distribution.  In the formulas above, the mean : is the
unavailability, q.  From Expression 6.32 and Table
6.19, we obtain that a 90% confidence interval for q
is

1.78E!2 ± 2.132×5.19E!3
  = 1.78E!2 ± 1.11E!2

because 2.132 is the 95th percentile of the Student’s
t distribution with 4 degrees of freedom.  Thus, the
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lower and upper confidence limits are

qconf,0.05 = 7.E!3
qconf,0.95 = 2.9E!2 .

This interval is approximate because the x values
come from an approximately normal distribution.

6.7.2.3 Bayesian Estimation

Bayesian estimates are given here.  Examples are
worked out after the general formulas are given.  As
above, assume that the data have been aggregated
enough so that {x1, ..., xn} is a random sample from a
normal(:, F2 ) distribution.

6.7.2.3.1 Noninformative Prior

The joint noninformative prior for (:, F2) is propor-
tional to 1/F 2, as stated in Section 6.6.1.2.1 (in the
context of lognormal distributions.)  As stated in that
section, the posterior distribution then results in

 ( ) / ( / )µ − x s nX

having a Student’s t distribution with n!1 degrees of
freedom.  Here : is the quantity with the Bayesian
uncertainty distribution, and everything else in the
expression is a calculated number.  In the present
context, : is the unavailability, q.  It follows that the
credible intervals agree exactly with the confidence
intervals given by Expression 6.32.  For example, a
90% credible interval for q is 

 .x t n s nX± −0 95 1. ( ) /

In Example 2.16, the mean : is interpreted as the
unavailability q.  Based on the values of xi, the
expression

(q ! 1.78E!2)/5.19E!3

has a Student’s t distribution with 4 degrees of
freedom.  A 90% credible interval is 

1.78E!2 ± 2.132×5.19E!3
= 1.78E!2 ± 1.11E!2
= (7.E!3, 2.9E!2)

which agrees exactly with the 90% confidence
interval found above.

Not all PRA software packages contain Student’s t
distribution.  Sometimes it is necessarily to temporarily
adjust the method to match the available software.
Analysts who are working without Student’s t distribu-

tion in their software package may be forced to use a
normal distribution with the same 90% interval as the
one given by the above calculation.  (To be more
conservative, match the 95% intervals or the 99% inter-
vals.)  If the degrees of freedom are not too small ($ 3
as a bare minimum) the approximation of a Student’s t
by a normal is probably acceptable.

In the above example, a normal distribution with the
same 90% interval would have 1.645F = 1.11E!2.
Therefore, a normal approximation for the posterior
distribution of q is normal with mean 1.78E!2 and
standard deviation 6.75E!3.

6.7.2.3.2 Informative Priors

Informative conjugate priors for : and F2 are presented
in Section 6.6.1.2.1, along with the Bayesian update
formulas.  The prior parameters are:

d0 = degrees of freedom for prior estimate of F2

F0
2 = prior estimate of F2 (more precisely, 1/F0

2 is prior
mean of 1/F2) 

n0 = prior number of observations (with variance F2)
for estimating :

:0 = prior mean of :

The update formulas are given in Section 6.6.1.2.1,
resulting in four corresponding parameter values
identified with subscript 1.  The final result is that the
posterior distribution of

( ) / ( / )µ µ σ− 1 1 1n

is Student’s t with d1 degrees of freedom.  Therefore, a
90% credible posterior interval is

. µ σ1 0 95 1 1 1± t d n. ( ) /

To develop an informative prior, Atwood and Engel-
hardt (2003) use some generic data from seven
plants, with a mean unavailability for CVC trains of
6E!3 and a between-plant standard deviation
3.5E!3.  Therefore, they set :0 = 6E!3 and F0 =
3.5E!3.  They point out that this data set does not
perfectly match the (much older) data of Example
2.16.  Therefore, they set n0 = 3, not 7.  They also
argue that the between-plant variance has little or
nothing to do with the between-calendar-quarter
variance of Example 2.16.  Therefore, they set d0 =
!1, corresponding to no prior information about the
variance.
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The update formulas of Section 6.6.1.2.1 yield:

d1 = !1 + 5 = 4
n1 = 3 + 5 = 8
:1 = (3×6E!3 + 5×1.78E!2)/8 = 1.34E!2
F1

2 = { !1×(3.5E!3)2 + (5 ! 1)×(1.16E!2)2 +
 [3×8/(3+8)](6E!3 ! 1.78E!2)2 }/4

     = 2.07E!4
     = (1.44E!2)2

Using the notation q instead of :, it follows that

(q ! 1.34E!2)/[1.44E!2) / 2.83]

has a posterior Student’s t distribution with 4 degrees
of freedom.  A 90% posterior credible interval for
unavailability is

1.34E!2 ± 2.132×(1.44E!2)/2.83
= (3E!3, 2.4E!2).

6.7.2.4 Model Validation

A crucial feature of the simple method proposed above
is aggregation of data, to reduce skewness and achieve
approximate normality.  The example analysis given
above used a Q-Q plot, Figure 6.63, to check whether
normality was achieved.  In addition, other data plots
and goodness-of-fit tests can be used to check the
normality, as described in Section 6.6.2.3.  However, if
the data have been aggregated into a small number of
sets, these tests and plots will probably not discover any
departure from normality — there are too few data
points.  As mentioned above, to make the method work
well, one should over-aggregate, beyond what the
above analysis tools suggest is minimally acceptable.

An implicit assumption when pooling data subsets is
that the various subsets correspond to the same distribu-
tion.  Therefore, one may try to check this assumption,
as follows.

The methods discussed in detail in Section 6.6.2.1 may
be used, although the data may not be of good enough
quality to show much.  In particular, box plots may be
used to suggest whether subsets can be pooled.  The
Kruskal-Wallis test, the nonparametric analogue of the

analysis-of-variance test for equal means of normally
distributed random variables, can be used to test equal-
ity of the unavailability in the data subsets.  However,
the many observations tied at zero make these methods
difficult to apply.

6.7.3 Comparison of the Analyses with
the Two Types of Data

The approach with detailed data works most easily if
the number of outages follows a Poisson distribution
and the outage durations can be assumed to have an
exponential distribution.  In that case, the posterior
distribution of unavailability is a rescaled F distribu-
tion.  The assumptions of Poisson counts and exponen-
tial outage durations must be checked.

The approach with summary data uses aggregation of
the data into subsets until the estimated unavailabilities
for the various subsets appear to be approximately
normal.  The resulting posterior distribution is a
rescaled Student’s t.  Data aggregation eliminates the
need to assume any particular distribution in the under-
lying process.  However, one must confirm that approx-
imate normality has been achieved.

Both methods work easily with either noninformative
and informative priors, although the formulas for
updating an informative prior with summary data are
more intricate than when using detailed data.

The posterior distributions from the two analyses
given above for Example 2.16 are compared in Table
6.20.  It can be seen that in this example the two
posterior distributions are quite consistent with each
other.

Table 6.20 Comparison of Bayesian results
from two approaches, using
noninformative priors.

Data Mean 90% Interval

Detailed 1.87E!2 (1.1E!2, 3.0E!2)

Summary 1.78E!2 (7.E!3,   2.9E!2)
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7.  TRENDS AND AGING

7.1 Overview

The material in this chapter is needed only if the model-
validation tools in Section 6.2 or 6.3 have discovered
the existence of a trend in an initiating-event rate 8 or
in a probability p.  This chapter is more advanced than
Sections 6.2 and 6.3, because it actually models the
trend.

Such a trend might be in terms of calendar time, or in
terms of system age.  Section 7.2 considers trends in 8
when the events are grouped into bins, such as counts of
events in calendar years.  Section 7.3 briefly considers
trends in 8 when the individual event times are used as
the data.  Section 7.4 considers trends in p.  These
sections all model 8 or p as a parametric function of
time.  The final section of this chapter, Section 7.5, ties
together some of the methods that have been presented
in different specific applications in this chapter and in
Chapter 6.

Modeling a trend normally involves some rather de-
tailed mathematics.  A Bayesian analysis must construct
a sample from the posterior distribution, and a
frequentist analysis must calculate the fitting equations
and estimate the uncertainties in any unknown parame-
ters.  The viewpoint taken here is that the computer
software will do those calculations.  This chapter avoids
any equations that the user will not need.  Instead, this
chapter presents the various approaches that are possi-
ble, and shows how to interpret the computer output
and translate it, if necessary, into the quantities needed
for probabilistic risk assessment (PRA).

It turns out that the Bayesian analysis is no harder to
present than the frequentist analysis.  Therefore, it is
given first in Chapter 7.

Some of this material is drawn from an INEEL report
by Atwood (1995), and indirectly from more advanced
sources.  The INEEL report gives additional examples,
including definitions of somewhat more complex
models and discussion of pitfalls in constructing such
models.

7.2 Binned Poisson Data

7.2.1 Examples

Two examples are given here.  The first example was
introduced as Example 6.5, unplanned demands for the
high pressure coolant injection (HPCI) system during

1987-1993.  Table 6.8, summarizing that example, is
repeated here for convenience as Table 7.1.

Table 7.1 HPCI demands and reactor-critical-
years (from Example 6.5).

Calendar
year

HPCI
demands

Reactor-critical-
years

1987 16 14.63

1988 10 14.15

1989   7 15.75

1990 13 17.77

1991   9 17.11

1992   6 17.19

1993   2 17.34

The second example, Example 7.1, groups events not
by year of occurrence, but by age of the reactor.

Example 7.1 Thermal-fatigue leak events, by
plant age.

Thermal-fatigue leaks in PWR stainless-steel
primary-coolant-system piping are tabulated by
Shah et al. (1998).

Age (years
from initial
criticality)

Number
of leaks

Reactor-
years

0.0 – 5.0 2 1052

5.0 – 10.0 1 982.5

10.0 – 15.0 4 756.9

15.0 – 20.0 4 442.4

20.0 – 25.0 2 230.9

25.0 – 30.0 0 43.9

The PWR plants considered here include all the
western-designed PWRs, 217 reactors in all, from
initial criticality until  May 31, 1998, or until decom-
missioning.  For details, see Shah et al. 1998.  Plant
age is summarized in 5-year bins, shown in the first
column of the table.  Other bins, such as 1-year bins
or 10-year bins, could have been constructed.  For
each thermal-fatigue leak event, the age of the plant
at the time of the event was calculated.  The number
of such events for each age bin is given in the
second column of the table.
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To count the reactor-years for each age, the number
of reactors that experienced 1 year, 2 years, etc.
were totaled.  For example, Three Mile Island 2 had
its initial criticality in December 1978, and was shut
down in March 1979.  It was counted as contributing
1/4 of a reactor-year (= 3 months) to the first bin (age
0.0 – 5.0).  At the other extreme, Yankee Rowe
operated from July 1961 to September 1991.  It was
counted as contributing 5 reactor-years in each of
the six age bins. These counts of reactor-years are
totaled in the third column of the table in Example
7.1.

The two examples have identical form.  Each bin
corresponds to a time, which can be coded numerically.
This time will be called clock time here.  In Example
6.5, the clock time is calendar time.  Each bin corre-
sponds to a year, and could run from 1987 through
1993, or from 87 to 93, or from 0 to 6, or even !3 to
+3.  Any coding works, as long as it is numerical.
Denote the coded clock time for bin i by ti.  The units of
ti are calendar years, and the different possible codes
correspond to different definitions of year 0.  In Exam-
ple 7.1, clock time is age.  The bins are identified most
simply by the midpoints of the age bins: 2.5, 7.5, 12.5,
etc.  The units of ti are age in years.  They could also be
identified by other numerical codes, corresponding to
the smallest age in the bin or the largest age in the bin
or some other code.

In both examples, each bin has a clock time, an event
count, and an exposure time.  When considering possi-
ble trends, we must distinguish between clock time and
exposure time, paying attention to a distinction that was
not so important in the earlier chapters.  In this chapter
the symbols ti, xi, and si denote the coded clock time,
the event count, and the exposure time, respectively,
for bin i.  Suppose that 8 has units of events per reactor-
year.  Then the units of exposure time must be reactor-
years. During any short time interval from t to t + )t,
the exposure time )s equals )t times the number of
reactors operating during the time period.

To avoid redundancy, this section will use only the
Example 6.5 for illustrating the methods, although
either example could be used.

7.2.2 Model

7.2.2.1 General Model

The assumed model is an extension of the model for a
Poisson process given in Section 2.2.2.  The following
assumptions are made.  These are a simplification of the
slightly weaker assumptions given by Thompson
(1981):

1. The probability that an event will occur in any
specified interval with short exposure time ap-
proaches zero as the exposure time approaches
zero.

2. Exactly simultaneous events do not occur.
3. Occurrences of events in disjoint time periods are

statistically independent.

This model is a nonhomogeneous Poisson process
(NHPP).  The model in Section 2.2 is a homogeneous
Poisson process (HPP), a special case of the model
given here.  Consider now a single operating system, so
that exposure time equals elapsed clock time.  In the
HPP, the probability of an event in the time interval (t,
t + )t) is approximately 8)t.  In the NHPP, 8 is not
constant, but is a function of t.  The function 8(t) is
called the time-dependent event occurrence rate.  Some
authors call it the Poisson intensity function.  The
probability of an event in the time interval (t, t + )t) is
approximately 8(t))t.  In a longer interval, from a to b,
the random number of events is Poisson with mean

.λ( )t dt
a

b

∫

Four special cases are mentioned here.

1. The HPP has 8(t) = a constant > 0.
2. The loglinear model has ln8(t) = a + bt, or equiva-

lently, 8(t) = Aebt, with A = ea.  This is also called
the exponential event rate model.  Here, a and b
are unknown parameters, which must be estimated
from the data.

3. The Weibull process, or power-law event rate
model has 8(t) = (b/c)(t/c)b!1, or equivalently  8(t)
= Atb!1.  Both b and c are unknown parameters
(with b > 0, c > 0), to be estimated from the data.
This model can be rewritten as 

ln8(t) = ln(A) + (b!1)ln(t) ,

which is a linear function of ln(t).  Several param-
eterizations are found in the literature.

4. An extended power-law process has 8(t) = Atb!1

+ 80, for 80 $ 0.  The Swedish I-Book (Pörn et al.
1994) uses a Bayesian analysis of this model. The
method is developed by Pörn (1990) and briefly
explained by Pörn et al. (1993) and Lehtinen et al.
(1997).

An occurrence rate must be nonnegative.  Note that all
four of these models have this requirement built in —
they force 8(t) to be positive for all t.  The number of
possible models is infinite, because any nonnegative
function of t gives a different model.
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Figure 7.1  Loglinear model, ln8(t) = a + bt, for
a = 0.1 and three possible values of b.  The vertical
axis shows ln8(t).

Figure 7.2  Same model as in previous figure,
showing 8(t) instead of ln8(t).

In the first bulleted case, 8(t) is constant, and in the
other three cases 8(t) is monotone in t, either increasing
forever or decreasing forever.  An event frequency has
a bathtub shape if 8(t) is decreasing when t is small,
then roughly constant, and finally increasing when t is
large.  Models of a bathtub shape require more parame-
ters.  Therefore, bathtub curves are commonly used to
describe models qualitatively, but have not been imple-
mented in widely-used quantitative models.

As noted, the loglinear model satisfies

ln8(t) = ln(A) + bt

and the power-law model satisfies

ln8(t) = ln(A) + (b!1)u 

where u = ln(t).  Therefore, the power-law model can be
expressed as a loglinear model in ln(t), as long as t stays
away from zero.  Therefore, the illustrations of this
section will use the loglinear model.  If they so desire,
readers can translate this material into the power-law
model by redefining b and replacing t with u / ln(t).
The extended power-law model will not be considered
further here.

When multiple systems are observed simultaneously,
the total number of events is again a Poisson random
variable, and the mean count is the sum of the means
for the individual systems.  This fact will be used to
account for the exposure times in the examples.

The loglinear and simple power-law models given
above are now discussed in detail.

7.2.2.2 Loglinear Model

An occurrence rate must have units of events per
exposure time unit.  Therefore, in the loglinear model,
A has units of events per exposure time unit, and b has
the inverse units of the time axis.  In Example 6.5, A
has units 1/reactor-critical-year, and b has units
1/calendar-year.  In Example 7.1, A has units 1/reactor-
calendar-year, and b has units 1/year-of-age. 

The loglinear model is illustrated here, for a = 0.1
and b = +1.0, 0.0, and !1.0.  Figure 7.1 shows ln8(t)
as a function of t, and Figure 7.2 shows 8(t) as a
function of t.

The interpretation of b is the slope of ln8(t).  If b is
negative, ln8(t) is decreasing, and therefore the event
occurrence rate 8(t) is also decreasing.  If b is positive,
8(t) is increasing, and if b = 0, 8(t) is constant.  Tests
for trend will be formulated as tests of whether b = 0.

The interpretation of a is the intercept of ln8(t), that is,
the value of ln8(t) at t = 0.  The meaning of a depends
on how time is coded.  In Example 6.5, with HPCI
demands, if t runs from 1997 to 2003, the value t = 0
corresponds to about 2000 years ago, and a is the value
of ln8(t) at that time.  This is an enormous extrapola-
tion, and a can be estimated only with great uncertainty.
Coding t as running from 97 to 103 involves less
extrapolation, because now t = 0 corresponds to the
year 1900, only some 100 years before the data.  Other
possibilities are to let t run from 0 to 6, or from !3 to
+3.  These coding schemes involve no extrapolation at
all, because 0 is included in the range of the observed
data.

In theory, it makes no difference which coding system
is used.  The different codings for t and the different
meanings of a compensate for each other.  For any
particular time, such as 1996 or 2001, the different
coding systems give exactly the same estimate of 8 at
that time.  In practice, however, no computed value is
exact, and roundoff errors can accumulate.  Use of large
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Figure 7.4  Same model as in previous figure, with
8(t) shown as function of t.

extrapolations can introduce large errors.  Well-pro-
grammed software should protect against this problem
automatically, no matter how the times are entered.
Nevertheless, the analyst can do no harm by choosing
a coding system with zero reasonably close to the data.

7.2.2.3 Power-Law Model

In both parameterizations given above for the power-
law model, b is a unitless shape parameter.  As will be
seen below,  b ! 1 is the slope of ln8(t) as a function of
ln(t).  In the first parameterization, c is a scale parame-
ter with units of t.  It does not have a simple interpreta-
tion.  In the second parameterization, A has strange
units, but a simple interpretation as the numerical value
of 8(t) at t = 1.

Figures 7.3 and 7.4 illustrate the power-law model for
A = 1.0, and b = 0.5, 1.0, 2.0, and 3.0.

Figure 7.3  Power-law model, showing ln8(t) as a
linear function of ln(t), with A = 1.0 and several
values of b.

In Figure 7.3, the parameter b ! 1 is the slope of ln8(t)
as a function of ln(t).  In Figure 7.4, b is a shape param-
eter, defining the shape of the curve.  In either figure,
the interpretation of A is the numerical value of 8(t) at
t = 1.

This model requires t $ 0, so a coding system should be
chosen so that all the observed times correspond to
nonnegative values of t.  Also, if the occurrence rate is
decreasing, the modeled occurrence rate becomes
infinite at t = 0. 

The loglinear and power-law models are widely used,
but they are chosen for their simplicity and conve-
nience, not their theoretical validity.  Any model must
be checked for goodness of fit.  Moreover, no model
should be extrapolated far into the future — even if
some convenient algebraic formula fits a trend well in
the past, that is no guarantee that the data will continue
to follow that formula in the future.

7.2.3 Bayesian Estimation with 
Loglinear Model

The first few paragraphs here describe the big picture in
very general terms.  Following that, the section carries
out the Bayesian estimation when the occurrence rate
satisfies the equation ln8(t) = a + bt.

A large-sample approximation is applicable.  As the
observed event counts become large, the form of the
likelihood function approaches the form of a normal
density in the unknown parameters.  That is, if the
likelihood function were treated as a probability den-
sity, it would be approximately a normal density.  This
is a general fact for large data sets that is exploited by
advanced statistics texts, such as Cox and Hinkley
(1974, Section 10.6).  Therefore, with large data sets
the conjugate prior is normal: if the unknown parame-
ters are given a normal prior distribution, the posterior
will be approximately normal, with very good approxi-
mation as the data set becomes large.  The correspond-
ing noninformative prior for a and b is the limiting
case as the variance approaches infinity, which is a
constant density.

For the work here, it will be assumed that a computer
program produces a sample from the posterior distribu-
tion.  The theory sketched above then leads us to the
conclusion that the posterior distributions not only
appear normal, they really are normal, or very close to
normal.
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Figure 7.5  Directed graph for analysis of Poisson
trend in Example 6.5.

model
{
    for (i in 1:N) {
        lambda[i] <- exp(a + i*b)
        mu[i] <- lambda[i]*s[i]
        x[i] ~ dpois(mu[i])
    }
    a ~ dnorm(0.0, 0.0001)
    b ~ dnorm(0.0, 0.0001)
}

Figure 7.6  BUGS script for analyzing data of 
Example 6.6.

Now let us move to the specific case at hand, with
ln8(t) = a + bt, and with a and b as the unknown
parameters.  For this case it happens that the above
normal approximation is valid when the event counts
are only moderate in size.

The bins must be small enough that 8(t) is approxi-
mately a straight line function within each bin, not
strongly curved within the bin.  Denote the midpoint of
the ith bin by ti.  Then the expected number of events in
the bin is well approximated by 8(ti)si, where si is the
exposure time for the bin.  The method is to fit the
observed Poisson counts to 8(ti)si, while assuming that
8(ti) has the form a + bti.  

A convenient software package is BUGS (1995),
Bayesian inference Using Gibbs Sampling.  The Win-
dows version is called WinBUGS.  It is also described
in Section 8.2.3, and documented by Spiegelhalter et al.
(1995).  It is currently available for free download at

http://www.mrc-bsu.cam.ac.uk/bugs/ .

WinBUGS is a high-powered research tool, capable of
analyzing very complex models.  It does this by not
trying to obtain a simple random sample from the
posterior distribution.  Instead, it tries for something
more restricted, a Markov chain Monte Carlo
(MCMC) model.  Here a chain, or sequence, of
numbers is generated, starting at an arbitrary point but
eventually sampling from the posterior distribution.
The values in the sequence are not independent, but this
does not matter.  After the initial value has been essen-
tially forgotten, the remaining values form a sample
from the posterior distribution.  They can be used to
approximate the moments, percentiles, and shape of the
distribution.

WinBUGS can be used either with a graphical descrip-
tion of the model, called a “directed graph,” or with a
text script.  Example 6.5 will be analyzed using
WinBUGS here, assuming a loglinear model.

With the data of Example 6.5 (Table 7.1), BUGS was
used to model 8(i) = exp(a + bi), for i from 1 to 7.
Then X(i) was modeled as having a Poisson distribu-
tion with mean :(i) = 8(i)×s(i).  Finally, a and b were
given very diffuse prior normal distributions.  Figure
7.5 is the logical diagram showing the relations.

In Figure 7.5, deterministic relations are shown by
dashed arrows, and stochastic relations (random
number generation) are shown by solid arrows.  The
parts of the model that depend on i are enclosed in
the box.

Figure 7.6 shows the BUGS script that was used.
Many users find the text script easier to manipulate
than the graph.

One idiosyncrasy of BUGS is that it parameterizes
the normal distribution in terms of the precision J =
1/F2.  The reasons are explained in Section 6.6.1.2.1.
Therefore, a precision of 0.0001 in the script corre-
sponds to a standard deviation of 100.  That gives a
very diffuse distribution.

The script was executed with four separate starting
values of a and b, generating four chains of values,
each 10,000 elements long.  The first 200 elements
of each chain were discarded, and the remaining
39,200 elements were used to estimate the posterior
distributions.  Table 7.2 summarizes the posterior
distributions for a and b.  When interpreting these
summaries, be aware that a and b are not indepen-
dently distributed.

Even though the numbers are not necessarily accu-
rate to three places, the table shows that the mean
and median are nearly equal in each case, and the
5th and 95th percentiles are approximately 1.645
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Figure 7.7  Posterior distribution of 8, assuming
exponential trend in Example 6.5.

standard deviations from the mean.  That is, the
distributions appear to be approximately normal.
(BUGS supplies graphical estimates of the densities,
which also appear normal.)  This is consistent with
the theory mentioned earlier.

Table 7.2 Posterior statistics for a and b, for
loglinear model of Example 6.5.

a b

mean 0.264 !0.237

median 0.27 !0.237

st. dev. 0.251 0.067

5th percentile !0.157 !0.348

95th percentile 0.662 !0.129

The mean of b is negative, and 3.5 standard devia-
tions away from the mean.  This is very strong evi-
dence of a downward trend.  The posterior belief in
a flat or rising trend is only 2.3E!4.  (This is M(!3.5),
from Table C.1.)

The posterior distribution of 8 is lognormal in any
year.  It is shown in Figure 7.7.  The median is
plotted as a solid line and the 5th and 95th percen-
tiles are shown as dashed lines.  The simple point
estimates

$ /λ = x si i

are plotted as dots.

For any particular year, the value of 8(t) = exp(a + bt)
is between the two dotted lines with 90% probability.
This is enough for many applications.

Suppose, however, that we were interested in the entire
curve.  This curve is the set of two-dimensional points
of the form

{ (t, 8(t)) | !4 <  t < 4 } .

For two distinct times t1 and t2, a pair (a, b) that puts
8(t1) between the lines may put 8(t2) outside the dotted
lines.  Therefore, the entire curve does not fall between
the two dotted lines with 90% probability.  A 90%
region for the entire curve would need to be wider than
the band shown in Figure 7.7.  This subtle issue is
revisited for frequentist estimation in Section 7.2.4.5. 

7.2.4 Frequentist Estimation with 
Loglinear Model

The frequentist method has several variations, which
have been implemented in various software packages.
They are presented here, applied to the example of
Table 7.1, and the results are compared to each other
and to the Bayesian results.

Assume a loglinear model, ln8(t) = a + bt.  Statistical
software packages present their products using some
technical terms, summarized here.

• General linear model: the mean of the observable
random variable is a linear function of unknown
parameters.  This is NOT useful for the present
problem.  It is mentioned only to point out the
possible confusion with the generalized linear
model below.

• Loglinear model: the logarithm of the mean of the
observable random variable is a linear function of
unknown parameters.  This is exactly the model
considered in this section.

• Generalized linear model: a transformation of the
mean of the observable random variable is a linear
function of unknown parameters.  This includes the
loglinear model as a special case, when the trans-
formation is chosen to be the logarithm.

7.2.4.1 Point Estimation

Analysis of the loglinear model finds the maximum
likelihood estimates (MLEs) of a and b, based on the
Poisson counts.  The discussion below will sometimes
call this the Poisson-maximum-likelihood method.  
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Figure 7.8  Frequency of unplanned HPCI demands,
from Figure 6.22, with exponentially decreasing fitted
trend line overlaid.

This approach is applied here to Example 6.5.  No
calculations are given for Example 7.1 because they
would be very similar, differing only by using age
instead of calendar year.

A loglinear model was fitted to the HPCI demand
data of Table 7.1 (Example 6.5).  When the years
were coded as 87 through 93, the estimates of a and
b were 20.5305 and !0.2355.  The second number
is the slope of ln8(t), and the first is the fitted value of
ln8(t) when t = 0, that is, in the year 1900.  (Of
course, no HPCI systems existed in 1900, but the
model does not know that and fits a value.)  When,
instead, the years are coded from 0 to 6, the slope is
the same, but the intercept parameter is different,
because now the value t = 0 is the year 1987.  The
estimate of a, the intercept, is 0.0389, the fitted value
of ln8(t) for 1987.

The fitted value of 8(t) is the same, whichever coding
method is used.  The fitted values are shown in Fig-
ure 7.8, overlaid on Figure 6.22.  Each point and
vertical confidence interval is based on data from a
single year, but the fitted trend uses all the data.

7.2.4.2 Confidence Intervals for a and b

With the point estimates  and , almost all software$a $b
will also report standard errors, estimates of the stan-
dard deviations of the estimators.  The estimators are
assumed to be approximately normally distributed.
This is a good approximation if the number of observa-
tions in each bin is not too small.  (One rule of thumb is
that the count in most bins be at least five.  This is
based on the observation that each bin’s Poisson
distribution is approximately normal if the mean is five
or more.  This rule of thumb is sufficient, but perhaps
unnecessarily conservative.)

A 100(1 ! ")% confidence interval for b is

(7.1)$ ( )/b z se ba± −1 2

where  is the estimate, and z1 ! "/2 is the 1 ! "/2$b
quantile of the normal distribution.  For example, for a
90% confidence interval, " equals 0.1 and the 0.95
quantile is 1.645.  The term se(b) is the corresponding
standard error of b, the estimated standard deviation of

. $b

A confidence interval for a is constructed in a similar
way, but is normally much less interesting.  Who cares
what value a has?  That parameter is just the intercept
at some arbitrarily coded time with t = 0.  The parame-
ter a is of interest only because it can be used to con-
struct confidence intervals for ln8(t) = a + bt.

7.2.4.3 Test for Presence of Trend

Let two hypotheses be defined by:

H0: 8(t) is constant.
H1: 8(t) = exp(a + bt),   b … 0.

The loglinear model is used as an illustration for the
alternative hypothesis, but any other specific model
could be used, as long as it is not constant.

Note that 8(t) = exp(a + bt) is constant if and only if b
is zero.  Therefore, the test of H0 is the same as a test
that b = 0.

As mentioned in Appendix B, tests for hypotheses
about b are intimately related to confidence intervals for
b.  The hypothesis

H0: b = b0

is rejected in favor of the hypothesis 

H1: b … b0

at significance level " if and only if the 100(1 ! ")%
confidence interval does not contain b0.  In particular,
the hypothesis

H0: b = 0 ,

the hypothesis of no trend, is rejected at level 0.10 if the
90% confidence interval for b is entirely on one side of
0.  The hypothesis is rejected at level 0.05 if the 95%
confidence interval is entirely on one side of 0, and so
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forth.  Most software packages print out a significance
level at which H0: b = 0 is rejected, the p-value for the
trend.

Similarly, software packages typically print a signifi-
cance level at which the hypothesis a = 0 is rejected.
This should be ignored, because the value of a has no
inherent interest.

We now compare the above test to an earlier one.
Section 6.2.3.2.2 gave tests for the presence of a trend,
illustrated with Example 6.5.  The only test it gave with
binned data was the chi-squared test of:

H0: 8(t) is constant.
H1: 8(t) is not constant.

Section 6.2.3.2.2 commented that the test is not very
powerful, because it considers such a broad class of
possibilities as the alternative hypothesis.

In Example 6.5, the chi-squared test rejected the
hypothesis of constant 8 with p-value 0.009.  The
present test of b = 0 rejects this hypothesis with p-
value 0.0004.  Although both tests reject H0, the test
based on the loglinear model finds stronger evidence
against constant 8 than the chi-squared test did.  In
an example with a less clear trend, the test based on
b = 0 might find a statistically significant trend when
the chi-squared test did not.

Suppose that 8 were not constant, but went up and
down in an irregular way with no persistent increasing
or decreasing trend.  The chi-squared test might dis-
cover this, but the test based on b would not discover
the nonconstancy of 8 — more precisely, the test of
b = 0  might “discover” the nonconstancy because the
random data might appear to indicate a trend in spite of
the true non-trending pattern of 8, but this would only
be an accident.  The test to use depends on the alterna-
tives that the analyst regards as credible.  A test that
focuses on those alternatives will be more powerful
than a test that is designed for different alternatives.

7.2.4.4 Confidence Interval for 8(t) at Fixed t

Most software packages also can find approximate
confidence intervals for ln8(t) at particular values of t.
It is worthwhile understanding the approach, because
the software output may require modification to coin-
cide with the analyst’s needs.  The idea is that the

MLEs  and  are approximately normally distrib-$a $b
uted.  The software finds an approximate 100(1 ! ")%
confidence interval for ln8(t) as

(7.2)$ $ [ ( )]/a bt z se a bt+ ± × +−1 2α

where z1 ! "/2 is as defined earlier, and se(a + bt) is the
standard error, the estimated standard deviation of

.  The standard error depends on the value of t.$ $a bt+
It is found by the software — it cannot be found in a
naive way from the standard errors of a and b, because

the MLEs and  are correlated, not independent.$a $b
Expression 7.2 is a confidence interval for ln8(t).  The
confidence interval for 8(t) itself is found by taking the
exponential of the two bounds in Expression 7.2.

Understanding this algebraic form may be useful.  For
example, suppose that the software insists on giving
only a 95% confidence interval for 8(t), and the analyst
desires a 90% interval instead.  The following modifica-
tion can be made.  The " corresponding to a 95%
confidence interval is 0.05.  First, take logarithms of the
reported upper and lower confidence limits for 8(t).
Use these two values, and the form of Expression 7.2,
to find

z0.975 × se(a + bt) .

This follows from the fact that a 95% confidence
interval corresponds to 1 ! "/2 = 0.975.  Using z0.975

and z0.95 from a table of the normal distribution, calcu-
late the value of 

z0.95 × se(a + bt) .

From this, calculate the 90% confidence interval for
8(t),

 . (7.3)exp[ $ $ ( )].a bt z se a bt+ ± +0 95

7.2.4.5 Simultaneous Confidence Band at All t

The above confidence interval is for a particular t.  For
many values of t, many such confidence intervals could
be calculated.  Each is a valid confidence interval, but
they are not simultaneously valid.  This is a subtle
point.  To appreciate it, recall the interpretation of the
90% confidence interval for 8(t) for some particular
time t1:

Pr[ confidence interval for 8(t1) contains true
occurrence rate at time t1  ] = 0.90. (7.4)

Here, the data set is thought of as random.  If many data
sets could be generated from the same set of years, each
data set would allow the calculation of a confidence
interval for 8(t1), and 90% of these confidence intervals
would contain the true occurrence rate.
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Figure 7.10  Simultaneous 90% confidence band for
8(t), and 90% confidence interval for one frequency
of special interest, 8(93).

A similar confidence statement applies to each time.
The simultaneous statement would involve

Pr[ confidence interval for 8(t1) contains true
occurrence rate at time t1 AND
confidence interval for 8(t2) contains true
occurrence rate at time t2 AND
so forth  ]. (7.5)

This probability is hard to quantify, because the inter-
vals are all calculated from the same data set, and thus
are correlated.  However, Expression 7.5 is certainly
smaller than 0.90, because the event in square brackets
in Expression 7.5 is more restrictive that the event in
brackets in Equation 7.4.  

This problem is familiar in the context of least squares
fitting.  For example, Neter and Wasserman (1974)
discuss it, and attribute the solution to Working,
Hotelling, and Scheffé.  A simple adaptation to the
present setting is sketched by Atwood (1995, App.
B-7).  The simultaneous confidence band is obtained by
replacing z0.95 in Expression 7.3 by

,[ ( )].
/χ0 90

2 1 2r

where the expression in square brackets is the 90th
percentile of a chi-squared distribution with r degrees
of freedom.  Here, r is the number of unknown parame-
ters, 2 in this example.

The simultaneous 90% confidence band is about 30%
wider than the band of 90% confidence intervals,
because 

= 2.15,[ ( )].
/χ 0 90

2 1 2r

which is about 30% larger than

z0.95 = 1.645 

when r = 2.

Figure 7.9 again uses the HPCI unplanned-demand
data of Example 6.5.  The annual estimated event
frequencies are shown, along with the fitted fre-
quency, the simultaneous 90% confidence band on
the frequency, and the band constructed from the
individual 90% confidence intervals.

Simultaneous confidence bands typically are not
calculated by software packages.  They can be calcu-
lated by the user, however, based on the formulas above
and the information produced by the software package.

Figure 7.9  Simultaneous 90% confidence band and
band formed by individual 90% confidence intervals
for Poisson event rate, 8(t).

Which should be presented to users, the simultaneous
band or the band of individual confidence intervals?  If
the user’s interest is in a single time, such as the most
recent time, then clearly the confidence interval at that
time is of greatest interest.  If, on the other hand, the
user will look at the entire plot, for example to judge
the existence of a trend, then the simultaneous confi-
dence band is a better indication of the uncertainty in
the estimated line.  To satisfy both types of users,  the
graph could show the simultaneous confidence band
and the confidence interval at the time of greatest
interest.  Figure 7.10 shows such a plot, assuming that
a user would be most interested in the most recent time,
1993.

7.2.4.6 Alternative Using Least-Squares

Since the model assumes

ln8(t) = a + bt ,
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one might decide simply to use least-squares software
as follows.  First, estimate 8 based for each bin, based
on only the data for that bin;

$ /λi i ix s=

Then fit ln  to a + bti by least squares.  In principle,$λi

this works.  In practice, the method has several twists in
the road, described next.

First, if the observed count is zero in any bin, the MLE $λ
will be zero for that bin, and the logarithm will be
undefined.  This is the case for the final bin of Exam-
ple 7.1.  The following ways around this have been
proposed.

• Instead of estimating 8i by xi/si, use (xi + ½)/si.
This is equivalent to replacing the MLE by the
posterior mean based on the Jeffreys nonin-
formative prior.

• Estimate 8i by the posterior mean based on the
constrained noninformative prior.  In this case, the
constraint could be that the prior mean equals the
observed overall mean Eixi/Eisi, or equals a modifi-
cation to guarantee a positive number, (Eixi +
½)/Eisi.

Such ways tend to reduce the trend slightly, because
they add a constant to all the failure counts, slightly
flattening out any original differences.

The second point that must be considered is that the
variance of Xi /si is not constant.  Ordinary least-squares
fitting has some optimality properties if the variance is
constant.  Otherwise, it is more efficient to use weighted
least squares, with weights inversely proportional to the
variances of the observations.  Many statistical software
packages perform weighted least squares estimation.

For simplicity, this issue will be explained for the case

with no zero counts, and with ln8i estimated by ln( )$λi

= ln(xi/si).  The variance of ln(Xi/si) is approximately the
relative variance  of Xi /si ,  defined as
var(Xi /si)/E

2(Xi /si).  This is 1/E(Xi) = 1/(8isi) if Xi has a
Poisson(8isi) distribution. 

Unfortunately, the variances depend on the 8i values,
which are unknown.  Therefore, the following
iteratively reweighted least-squares method can be
used.  Begin by assuming that 8 is constant, and fit
ln(xi /si) to a straight line with weighted least squares,

and weights si.  Calculate the resulting estimates of 8i,

.  Then refit the data to a straight$ exp( $ $ )λi ia bt= +

line, using weighted least squares, and weights .$λi is
Repeat this process until the estimates stabilize.

The final point is that least-squares fitting typically
assumes that the data are approximately normally
distributed around the straight line.  In the present
context, this means that ln(Xi/si) is assumed to be
approximately normally distributed.  This assumption
is acceptable, unless the mean count is close to zero.
The variance of the normal distribution is then esti-
mated from the scatter around the fitted line.  This
differs from the typical treatment of Poisson data,
where the mean determines the variance.

A 90% confidence interval for 8(t) at a particular t is
given by 

(7.6)exp{ $ $ [ ( ) ( )]}.a bt t d se a bt+ ± × +0 95

where t0.95(d) is the 95th percentile of Student’s t
distribution with d degrees of freedom.  The software
will report the value of d.  It is the number of bins
minus the number of estimated parameters, 7 ! 2 in
Example 6.5.  The form of this equation is very similar
to the form of Equation 7.3, although the estimates and
standard deviation are calculated somewhat differently.

A simultaneous 90% confidence band has the same
form, but the multiplier t0.95(d) is replaced by

[2F0.90(r, d)]½ ,

where F0.90(r, d) is the 90th percentile of the F distribu-
tion with r and d degrees of freedom.  This modification
of Equation 7.6 is analogous to that for Equation 7.3 to
get a simultaneous confidence band.

7.2.5 Comparison of Methods

The three frequentist methods are compared here.
Following that comparison, the Bayesian method is
compared to the frequentist methods, first for the
current example and then in general.

Figure 7.11, from Atwood (1995), shows results from
three frequentist analyses of the data of Table 7.1.
As can be seen in the figure, the fitted lines are
similar for all three analyses.  The unweighted-least-
squares method gives an unnecessarily wide confi-
dence band.  This shows the inefficiency of un-
weighted least squares when the variance is not
constant.  The Poisson-maximum-likelihood ap-
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proach has a slightly narrower confidence band than
does the weighted-least-squares approach.  The
reason is that the least-squares approach introduces
an additional parameter that must be estimated, the
variance around the line.  The pure Poisson ap-
proach calculates the variance from the fitted mean.
The price of estimating an extra parameter is a larger
multiplier, [2F0.90(2, 5)]½ = 2.75 instead of

= 2.15.[ ( )].
/χ 0 90

2 1 22

One other reason for the difference between the two
plots on the right of the figure might be that they use
different estimators of the variance.  In this example,
however, the scatter around the line agrees almost
perfectly with the scatter predicted by the Poisson
assumptions, so the two calculations of the variance
agree.  This is coincidence, but it eliminates a possible
distraction in comparing the two methods.

In summary, all three calculations are valid, and yield
similar fitted lines.  The method of unweighted least
squares uses the data in a somewhat inefficient way,
however, and therefore produces an unrealistically wide
confidence band.  The method of iteratively reweighted
least squares provides a narrower confidence band, and
the loglinear model provides the narrowest band of all.
None of the calculations is exact:  the least-squares
method treats ln(count/time) as approximately normal,
and the Poisson-maximum-likelihood method treats the
parameter estimators as approximately normal.  How-
ever, the analysis based on the Poisson-maximum-
likelihood method is preferable (if the Poisson assump-
tion is correct), because it gives the tightest confidence

band, and reweighted least squares is second best.  It
may be that extra sources of variation, or
“overdispersion,” have entered the data, variation
beyond that caused by the Poisson distribution.  If so,
reweighted least squares would be best and the Poisson-
maximum-likelihood method would produce an unreal-
istically narrow band.

Now the frequentist methods are compared with the
Bayesian method, first for the particular example, and
then in general.

The corresponding figure from the Bayesian analysis
is Figure 7.7.  Careful examination of the figures
shows the following:

• The posterior median in Figure 7.7 is close to
the fitted line (the MLE) in Figure 7.9, which is
the middle panel of Figure 7.11.

• The 90% credible band in Figure 7.7 shows a
band that is valid for any one time, but not
simultaneously for all time.  It is close to the
inner band in Figure 7.9, which also is valid for
any one time but not simultaneously.  These
bands are somewhat narrower than the simulta-
neous bands of Figure 7.11. 

The following comments apply in general, not just to
the example:

• Frequentist estimation relies on approximate
normality of the estimators, and therefore does not
work well with data having few observed events.
Bayesian estimation obtains normal posteriors

Figure 7.11  Fitted Poisson event occurrence rate and simultaneous 90% confidence band, based on three ways
of fitting the HPCI unplanned-demands data.
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when the data set is large, but does not fail entirely
when the data set is small – it merely obtains a
different, non-normal, posterior.

• Most frequentist software packages for analyzing
trends include calculations for investigating the
goodness of fit of the model, as will be seen in
Section 7.2.6.  Current Bayesian software may
neglect this issue of model validation.

7.2.6 Model Validation

The three assumptions for a nonhomogeneous Poisson
process are given at the beginning of Section 7.2.2.
The first assumption is difficult to test from data.  The
second, dealing with common cause failures, has been
addressed in Sections 2.2.4 and 6.2.3.3.  The third
assumption is that event counts in disjoint intervals are
independent.  This was addressed using a test of serial
correlation in Section 6.2.3.4 when 8 is constant, but
the analogue is too complicated to consider here.  When
the data are collected into bins, as assumed here, serial
dependence can result in an unusually high or low event
count in a single bin.  This can be discovered by
goodness-of-fit tests, considered below.

The final assumption made when fitting a trend model
is the form of the model.  Methods to examine the
goodness of fit will be illustrated with the loglinear
model, following the precedent of the rest of this
section.

7.2.6.1 Graphical Check for Goodness of Fit

The natural graphical check is to compare the observed
values to the fitted line.  This is illustrated by Fig-
ure 7.8.  In that figure, the 90% confidence interval for
each year overlaps the fitted trend line.  Because no
year deviates strongly from the overall trend, the data
appear consistent with the assumption of an exponential
trend.  Even if one 90% interval had failed to overlap
the fitted trend line, one would not necessarily conclude
that the exponential-trend assumption is violated.  The
reason for not being concerned about a single failure to
overlap is that some 90% confidence intervals are
expected to miss the true value.  In the long run, as
many as 10% of the intervals may fail to contain the
true value.  In the short run, one miss in seven is 14%,
so one miss in the graph is not alarming.

The above discussion is written from a statistical
viewpoint.  An engineering viewpoint may reveal more.
For example, if the estimates for the individual bins
(plotted as dots in this section) drop very suddenly, it

may be that the mechanism has changed.  If the time
bins correspond to plant age, the frequent early events
may correspond to a learning period.  Such conjectured
causes should be investigated, and confirmed or re-
jected based on more detailed study of the events.  As
is typical, a statistical analysis only puts up road signs,
pointing to interesting subjects for engineering investi-
gations.

The statistical analysis is illustrated with an example
here.  The examples given earlier in this chapter could
be used, but Example 2.1 is more interesting when
investigating lack of fit.

Example 2.1 stated that a particular plant had 34
unplanned reactor trips while at power in 1987-1995.
Table 7.3 gives the dates of those initiating events.
This data set is a portion of the database used by
Poloski et al. (1999a).  This particular plant had its
initial criticality on 1/3/87 and its commercial start on
5/2/87.

Table 7.3 Dates of initiating events at one
plant, 1987-1995. (from Example 2.1)

01/21/87
01/22/87
02/27/87
03/11/87
03/13/87
03/31/87

04/03/87
04/12/87
04/14/87
04/21/87
04/22/87
05/24/87

06/17/87
06/21/87
06/22/87
07/09/87
08/04/87
11/07/87

11/08/87
03/09/88
10/14/88
10/30/88
01/16/89
02/06/89

02/07/89
02/22/89
03/14/89
10/09/89
06/03/91
07/12/92

07/15/92
07/17/92
10/12/95
11/05/95

These events were grouped by calendar year.
Because reactor trips occur only when the reactor is
at power, the relevant normalizing time is critical
time, given in Table 7.4 as critical years.

The now-familiar picture is given in Figure 7.12.  This
figure shows that the first observed value, for 1987,
is well above the fitted line, and the second observed
value, for 1988, is well below the fitted line.  In fact,
the assumed model seems to try to force data with
an L-shaped trend into a smooth exponentially
decreasing trend.

It appears that the plant had a learning period, during
which initiating events were quite frequent, followed
by a period with a much smaller frequency.  Exami-
nation of Table 7.4 shows that the learning period
seems to have lasted until the summer of 1987 (three
events in June, one each in July and August, and
only infrequent events after that).  It is not certain
that the explanation is “learning” in the usual sense,
but it is clear that the event frequency dropped
suddenly about six months after the initial criticality.
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Figure 7.13  Standardized residuals, also called the
Pearson chi-squared residuals, for data of
Figure 7.12.

Figure 7.12  Annual frequency of initiating events,
with fitted exponentially decreasing 8(t) and
simultaneous 90% confidence band on 8(t).

Table 7.4 Initiating events and  reactor-
critical-years.

Calendar
year

Initiating
events

Reactor-critical-
years

1987 19 0.70936

1988   3 0.75172

1989   6 0.79482

1990   0 0.89596

1991   1 0.81529

1992   3 0.75123

1993   0 0.99696

1994   0 0.82735

1995   2 0.83760

Incidentally, a plot based on Bayesian calculations
would show the same general information as Figure
7.12.  Replace the MLE fitted line by the posterior
median, and replace each confidence interval by a
credible interval for 8 based on a noninformative prior
and one year’s data.  For an example of such a Bayesian
plot, see Figure 7.18 in Section 7.4.3.

In ordinary least-squares fitting, it is standard to plot
residuals, where each residual is defined as the ob-
served value minus the fitted value.  Under the assumed
model, the residuals do not all have the same variance,
so sometimes the standardized residuals are plotted,
where a standardized residual is the residual divided by
its theoretical standard deviation.

In the present context, the ith count, Xi, is assumed to be
Poisson with mean si8(ti).  The ith residual, denoted ri,
is

.r x s ti i i i= − $( )λ

The variance of a Poisson random variable equals the
mean.  Therefore, the standardized residual is

 .r s ti i i/ $( )λ

In the context of binned data, these are also sometimes
called the Pearson residuals or the chi-squared
residuals, because the sum of the squared Pearson
residuals is equal to the Pearson chi-squared statistic.
A plot of the these residuals against time may be
helpful.  

Figure 7.13 plots the standardized residuals against
calendar year, for the example of Tables 7.3 and 7.4.
This plot shows severe lack of fit.  The standardized
residuals should be approximately normal (0,1), and
so should be mostly between !2 and 2.  A value
greater than 3.5 is just too large.  The plot also
shows something that may not be evident from
Figure 7.12.  The largest value corresponds to 1995,
not 1987.  This reflects the fact that in Figure 7.12,
the 1995 confidence interval is farthest from the fitted
line, in relative terms.

An informative plot for this example is the simple
cumulative plot, introduced in Chapter 6 (see Fig-
ure 6.23).  This plot would normally be used to check
on whether the event occurrence rate is constant.  The
slope is the event rate, and a nonconstant slope corre-
sponds to a departure from a straight line.

The cumulative event count is plotted against event
date in Figure 7.14.  In this example, the plot shows
a clear nonconstant slope, and moreover, the form of
the nonconstancy is shown: a very large rate (slope)
during the first year, followed by a somewhat smaller
rate, and then a very small rate in the last years.
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Figure 7.14  Cumulative count of initiating events, for
data of Table 7.3 (Example 2.1).

Two comments must be made.  First, this figure re-
quires the unbinned data, which may not be available in
every problem.  Second, the use of calendar time
instead of critical time on the horizontal axis may
distort the figure somewhat.

If there is lack of fit to the exponential trend model, the
analyst should try to identify the causes of the lack of
fit.  One frequent cause of lack of fit is systematic
variation — the assumed form of the model is incorrect.
In the examples of this section, systematic variation
means that ln8(t) is not of the form a + bt.  This was
revealed by Figures 7.12 and 7.14.  Another possible
cause is extra-Poisson variance, additional sources of
variation that are not accounted for in the Poisson
model.  Figure 7.13 may show this.  The residual for
1995 is surprisingly large.  Table 7.3 and Figure 7.14
both show that two events occurred in relatively quick
succession in 1995, and that three events occurred in
quick succession in 1992.  If any of these events were
dependent on each other, such dependence would
exaggerate the normal random variation in the counts
from year to year.

One must be careful about how to correct lack of fit.  In
this example, it is reasonable to delete the early history
of the plant, the part corresponding to the learning
period.  This would flatten the fitted line for the rest of
Figure 7.12, making it lower in 1988 and higher in
1995.  Thus, dropping early data would make the late
data fit better.  One would have to perform the analysis

to know whether this proposed solution will completely
remove the lack of fit in the late years or only reduce it.

The above approach does not consist of throwing away
data.  Instead, it divides the data into two relatively
homogeneous sets, which never should have been
pooled.  The set after the end of the learning period can
be analyzed as described above.  The other set, during
the learning period, can also be analyzed.  If it is thrown
away, that is only because no one chooses to analyze it.

If dividing the data into homogeneous pieces does not
correct the lack of fit, another option is to construct a
more complex model.  For example, 8 could be mod-
eled as a function of more variables than just t.  Or one
could postulate a random count with larger variance
than the Poisson variance.  Such topics are beyond the
scope of this handbook.

7.2.6.2 Statistical Test for Goodness of Fit

7.2.6.2.1 Test Based on Poisson Maximum 
Likelihood

When Poisson maximum likelihood is used to fit the
trend to the data, some software packages give two
measures of goodness of fit, the Pearson chi-squared
statistic and the deviance.  The Pearson chi-squared
statistic, denoted X2, is the sum of squares of the Pear-
son residuals.  The deviance is based on the theory of
generalized linear models.  It is defined as

D = 2Exi{ln(xi) ! ln[si ]} .$( )λ ti

For more details, see Atwood (1995) or books on the
generalized linear model.

The assumed model is

H0: 8(t) = a + bt 

for some (unknown) constants a and b.  If this model is
correct, and if the number of observations per bin is
large, both X2 and D have approximately a chi-squared
distribution, with degrees of freedom equal to the
number of bins minus the number of unknown parame-
ters.  In fact, the two statistics are asymptotically equal.
For small samples, on the other hand, the two are not
necessarily nearly equal to each other, nor is their
distribution approximately chi-squared.  The distribu-
tion of X2 typically approaches the chi-square distribu-
tion faster than the distribution of D does.
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These two statistics can be used to test whether H0 is
true.  Four situations can arise in practice.

• Both X2 and D are in the upper tail of the chi-
squared distribution, larger than, say, the 95th
percentile.  This is evidence of lack of fit to the
model, H0.  Report the p-value based on X2.  For
example, if X2 is at the 98th percentile of the chi-
squared distribution, report a p-value of 0.02.
Investigate the data to try to discover the reason for
the lack of fit.

• Both X2 and D are in the middle of the chi-squared
distribution, say between the 5th and 95th percen-
tiles.  Then the model appears to fit adequately.

• Both X2 and D are in the lower tail of the chi-
squared distribution.  This is an indication of
overfit, with too complex a model to be justified by
the data.  Although such a situation will probably
not arise with the two-parameter models of this
chapter, it can arise when the model contains many
factors, such as component age, manufacturer,
environment, etc.

• X2 and D are so different from each other that they
give conflicting conclusions.  That is, one statistic
is in the upper tail of the chi-squared distribution
and the other is in the lower tail, or one is in a tail
and the other is in the middle.  This can indicate
one of two possibilities.  (1) The data set may be
too small to allow an accurate assessment of the
goodness of fit.  The problem often can be reme-
died by pooling the data to some extent.  For
example, it is possible to fit a loglinear model
using nine one-year bins from Table 7.4.  If X2 and
D conflict, try pooling the data into two-year bins,
and so forth.  (2) H0 may be false in a way that one
statistic detects and the other does not.  X2 and D
are asymptotically equal only if H0 is true, not if H0

is false.  In this case, if it is really important to
decide whether H0 should be rejected, one could
try simulating data from the fitted model, and
seeing what fraction of the simulated data sets
produce a simulated X2 or D as large as actually
observed.  That fraction would approximate the
exact p-value, without relying on the asymptotic
chi-squared approximation.

 
For the HPCI unplanned demand data in Table 7.1,
the loglinear model seems to fit well.  The values of
X2 and D are 4.90 and 5.12, respectively.  These are
both in the middle of a chi-squared distribution.  The
degrees of freedom, 5, equals the number of bins, 7,
minus the number of unknown parameters, a and b.

For the initiating-event data of Table 7.4, X2 and D
are 28.93 and 24.17.  These are both far out in the
right tail of a chi-squared distribution with 7 degrees

of freedom.  This is very strong evidence against the
loglinear model.

The results of these statistical tests are consistent with
the conclusions based on the graphs.

7.2.6.2.2 Test Based on Weighted Least-Squares
Fit

Consider fitting a function of the form

y = a + bt 

based on observations yi at times ti.  In the present
context, y equals ln(xi /si).  In Section 7.2.4.6, the
weighted sum of squares

E wi[yi ! (a + bti)]
2

was minimized, with the weights equal to the inverses
of the estimated variances of Yi = ln(Xi /si).  If the model
assumptions are correct, and if the Yis are approxi-
mately normally distributed, the weighted sum of
squares has approximately a chi-squared distribution.
The degrees of freedom d is the number of bins minus
the number of unknown parameters.  The degrees of
freedom are 5 in the HPCI-demand example and 7 in
the initiating-events example.  (Purists will note that the
chi-squared distribution applies if the weights are fixed
in advance, not derived from the random data.  This
slight departure from theory is commonly ignored.)

If the weighted sum of squares is in the right tail of the
chi-squared distribution, such as beyond the 95th
percentile, this is evidence of lack of fit.  As mentioned
above, one common cause of lack of fit is systematic
variation — the assumed form of the model is incorrect.
In the examples of this section, that means that ln8(t) is
not of the form a + bt.  Another possible cause is extra-
Poisson variance, additional sources of variation that
are not accounted for in the Poisson model.  To gain
insight as to which contributors to lack of fit seem to be
present, examine plots similar to Figures 7.12 through
7.14.

7.3 Unbinned Poisson Data

Example 6.6 and Table 7.3 are typical examples of the
type of data considered here.  That is, the exact event
times are used.  The corresponding summary tables of
counts, given in Tables 7.1 and 7.4, are not used.

In principle, the exact event times contain more infor-
mation than the summaries of counts in bins.  The
counts can be calculated from the exact event times, but
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the exact event times cannot be retrieved from the count
totals.  Therefore, in principle, better procedures can be
squeezed out of the exact event times.  However,
software based on binned event counts is more widely
available.  Also, little information is lost by grouping
the event times into bins, unless the bins are very large
and coarse.  Therefore, use of binned data is usually the
most practical method for the data analyst.

7.3.1 Bayesian Analysis

When the exact event times are used, it is difficult to
write out the likelihood.  In principle, one must write
the likelihood of each event time, conditional on the
previous times, and finally the probability of no events
after the final observed event until the end of the
observation period. [See Section 3.3 of Cox and Lewis
(1966).]  Formulas are given for several cases by
Atwood (1992), but they are not intuitive.

Binning the data, as in Section 7.2, is much simpler.
Moreover, the bins may be made as numerous and small
as the analyst desires.  Many of the bins would then
have event counts of zero, but that is allowed.  This
approach would capture virtually all of the information
in the data.  In practice there is little advantage in
constructing very fine bins, but the analyst who was
intent of squeezing every last bit of information from
the data could do it.

7.3.2 Frequentist Analysis

Frequentist analysis is also simpler when the data are
binned, although Atwood (1992) works out the formu-
las for the MLEs and approximate confidence intervals
for several cases that use the exact event times.  The
unified notation in that article does not make the
expression immediately obvious for any particular
model.   Typically, the MLEs must be found through
numerical iteration rather than directly from algebraic
formulas.

The simplest approach is to bin the data and use the
methods of Section 7.2.  Remember that the bins must
not be too fine; a conservative rule of thumb says that
most of the bins should have expected event counts of
five or more.

The exception — the only relatively easy case with
unbinned data — is the power-law model when the
process is observed from time zero.  Typically, the data
collection begins at some time in the middle of opera-
tion, but in those rare cases when the data collection
starts at time zero and ends at some time J, the MLEs of

the parameters in the two parameterizations of the
power-law model are:

,$ / ln( / )b n ti
i

n

=
=
∑ τ

1

, and$ / / $c n b= τ 1

 .$ $ /
$

A nb b= τ

Here n is the number of events, ti is the time of the ith
event, and J is the final time in the data-observation
period.  These formulas can be obtained by translation
into the notation of Section 7.2.2.1 of formulas in Bain
and Engelhardt (1991, Chap. 9, Eq. 13) or Atwood
(1992, Section 6.1).  Those references also consider
confidence intervals and goodness-of-fit tests.

7.4 Binomial Data

This section parallels Section 7.2 closely.  Only the
formulas are different, because the section deals with
failures on demand instead of events in time.  Because
of the similarity to Section 7.2, some of the topics are
given a cursory treatment here.  These topics are com-
pletely analogous to the material in Section 7.2, where
a fuller description can be found.

7.4.1 Examples

Example 6.10 can be used.  This example consisted of
63 demands for the HPCI system during 7years, and 12
failures.  It is convenient to combine the data into bins,
such as calendar months, calendar years, etc.  Such
binning summarizes the data in a compact way.  For
goodness-of-fit tests, discussed in Section 7.4.6, bin-
ning is not merely convenient – it is required.  If the
bins are too fine (too few failures and successes ex-
pected in each bin) then the goodness-of-fit statistics X2

and D will be inconsistent with each other, and neither
will have an approximate chi-squared distribution under
H0.  On the other hand, the bins must not be too coarse.
As in Section 7.2, denote the midpoint of the ith bin by
ti.  The bins must be small enough so that the expected
number of failures in the bin can be approximated by
the number of demands in the bin times p(ti).

The data from Example 6.10 are summarized by
calendar year in Table 6.14, which is repeated here as
Table 7.5.

In this example the bins correspond to calendar years.
Other examples could be constructed in which the bins
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correspond to ages, so that p would be modeled as a
function of age rather than calendar time.

Table 7.5 HPCI failures on demand, by year
(from Example 6.10).

Calendar year Failures Demands

1987 4 16

1988 2 10

1989 1   7

1990 3 13

1991 2   9

1992 0   6

1993 0   2

7.4.2 Model

7.4.2.1 General Model

The model is the same as that in Sections 2.3.1 and 6.3,
except now the probability p depends on time, t.  Thus,
the model assumptions are:

1. The outcome of a demand at time t is a failure with
some probability p(t), and a success with probabil-
ity 1 ! p(t).

2. Occurrences of failures on different demands are
statistically independent.

The number of demands and their times are assumed to
be fixed, and the outcome on each demand is assumed
to be random.

7.4.2.2 Logit Model

By far the most commonly used functional form for p(t)
is the logit model.  In this model the logit transform of
p(t) is a function of unknown parameters.  Fitting such
a model to data is sometimes called logistic regression.
The model that will be used in this section is

logit[p(t)] = a + bt ,

where the logit function is defined as

logit(p) = ln[ p/(1 ! p) ] .

This function was also encountered in Section 6.3.2.5.2
and in Appendix A.7.9, where the logistic-normal
distribution is introduced.  Like the loglinear model for

8(t), the logit model for p(t) is a model in the class of
generalized linear models.

A frequently used relation is that

y = logit[p(t)] / ln{ p(t)/[1 ! p(t)] }

is equivalent to 

p(t) = logit!1(y) / ey/(1 + ey) , (7.7)

denoting the inverse function of the logit by logit!1.
Figure 7.15 shows logit[p(t)] as a function of t, and
Figure 7.16 shows p(t) itself as a function of t.  Notice
that in Figure 7.16 the value of p(t) stays between 0.0
and 1.0, as it should.

Figure 7.15  Plot of ln{ p(t)/[1 ! p(t)] } = a + bt, with
a = !2 and three values of b.

Figure 7.16  Plot of p(t) as a function of t, correspond-
ing to Figure 7.15.

The parameters have simple interpretations:  a is the
value of the logit of p when t = 0, and b is the slope of
the logit of p.
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model
{
    for (i in 1:m) {
        p[i] <- exp(a + i*b)/(1 + exp(a+i*b))
        x[i] ~ dbin(p[i], n[i])
    }
    a ~ dnorm(0.0, 0.0001)
    b ~ dnorm(0.0, 0.0001)
}

Figure 7.17  BUGS script for analyzing data of
Example 6.10.

7.4.2.3 Loglinear Model

If p is small, then logit(p) is close to ln(p), and the logit
model could be approximated by

ln[p(t)] = a + bt .

This is a loglinear model, just as in Section 7.2.2.2.
Software programs for analyzing a generalized linear
model always include the logit model as one special
case, and software programs for logistic regression are
based on the logit model.  However, if for some reason
the analyst has software that only allows for the log-
transformation, not the logit-transformation, that
software is probably adequate as long as p is small.

7.4.3 Bayesian Estimation with Logit
Model

The large-sample theory mentioned in Section 7.2.3
applies here as well.  As the data set becomes large
(many demands and failures) the form of the likelihood
function approaches the form of a normal density for
the two variables a and b.  Therefore, with large data
sets the conjugate prior is normal: if a and b are given
a normal prior distribution, the posterior will be approx-
imately normal, with very good approximation as the
data set becomes large.  The corresponding
noninformative prior for a and b is the limiting case as
the variance approaches infinity, which is a constant
density.

For the work here, it will be assumed that a computer
program produces a sample from the posterior distribu-
tion.  The theory sketched above will then lead us to the
conclusions that the posterior distributions not only
appear normal, they really are normal, or very close to
normal.

A convenient, and free, software package is BUGS
(1995), Bayesian inference Using Gibbs Sampling.
This was also used in Section 7.2.3, where it is de-
scribed in more detail.  Example 6.10 is analyzed here
using the Windows version, WinBUGS, assuming a
logit model.

Using the data of Example 6.10 (Table 7.5), BUGS
was used to model logitp(i) = a + bi, for i from 1 to 7.
Then X(i) was modeled as having a binomial(n(i),
p(i)) distribution, where n(i) is the number of de-
mands in year i.  Finally, a and b were given very
diffuse prior normal distributions.

Figure 7.17 shows the BUGS script that was used to
analyze the data.

This uses the Equation 7.7 for expressing logit(p) in
terms of the normally distributed quantity a + ib.
Note the way BUGS happens to parameterize
distributions, putting p before n in the list of binomial
parameters, and parameterizing the normal distribu-
tion in terms of the precision J = 1/F2.  The reason for
using precision is explained in Section 6.6.1.2.1.  A
precision of 0.0001 in the script corresponds to a
standard deviation of 100.  That gives a very diffuse
distribution.

The script was executed with four separate starting
values of a and b, generating four chains of values,
each 10,000 elements long.  The first 500 elements
of each chain were discarded, and the remaining
38,000 elements were used to estimate the posterior
distributions.  Table 7.6 summarizes the posterior
distributions for a and b.  When interpreting these
summaries, be aware that a and b are not indepen-
dently distributed.

Table 7.6 Posterior statistics for a and b, for
loglinear model of Example 6.5.

a b

mean !0.8838 !0.2085

median !0.8654 !0.204

st. dev. 0.6477 0.1961

5th percentile !1.981 !0.5395

95th percentile 0.1471 0.1063

The table shows that the mean and median are
nearly equal in each case, and the 5th and 95th
percentiles are approximately 1.645 standard devia-
tions from the mean.  This approximation is poorest
for a, with !0.8838 + 1.645 × 0.6477 = 0.182, some-
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Figure 7.18  Posterior trend line for p with 90%
credible band, for data of Table 7.5.  In addition,
annual estimates and 90% credible intervals are
shown, based on constrained noninformative prior.

what larger than the reported 95th percentile.  That
is, the distributions appear to be approximately
normal, as anticipated by the theory mentioned
earlier, but the approximation is not perfect in the
tails.

The mean of b is negative, but not strongly so, only
1.06 standard deviations below 0.  Treating b as
normally distributed, a table of the normal distribution
shows that b is negative with probability 0.86 and
positive with probability 0.14.  Therefore, we are not
really sure that the trend is downward.

The posterior distribution of p is approximately
logistic-normal in any year.  It is shown in Figure
7.18.  The median is plotted as a solid line and the
5th and 95th percentiles are shown as dashed lines.
This is analogous to Figure 7.7 for 8.

Figure 7.7 also plotted the MLEs, based on each
year’s data, as dots.  To illustrate the graphical
possibilities, Figure 7.18 is constructed somewhat
differently.  The total data set has 12 failures in 63
demands.  Therefore we constructed the constrained
noninformative prior with mean 12/63.  Interpolation
of Table C.8 shows that this prior is approximately
beta(0.324, 1.376).  For each year of data, this prior
was updated to obtain the posterior for that year; the
90% credible interval was plotted as a vertical line,
with a dot showing the posterior mean.

All the intervals overlap the fitted trend line.  This is
graphical evidence that the logit model fits the data
well.  (Many other models might also fit this sparse
data set well.)

7.4.4 Frequentist Estimation with 
Logit Model

7.4.4.1 Point Estimation

The model is analyzed by finding the MLEs of a and b,
based on binomial counts.  The discussion below will
sometimes call this the binomial-maximum-likelihood
method.  The software finds the estimates by numerical
iteration.

When this model is fitted to the data of Table 7.5, a
fitted trend is found, which can be overlaid on
Figure 6.38.  It is not shown here, but will be dis-
played with a simultaneous confidence band in
Section 7.4.4.4.

7.4.4.2 Confidence Intervals for a and b

As in Section 7.2.4.2, almost all software for estimating
a and b reports standard errors, estimates of the stan-
dard deviations of the maximum likelihood estimators.
The estimators are assumed to be approximately
normally distributed, which is valid unless the sample
size is small.

Therefore, as in Section 7.2.4.2, a 100(1 ! ")% confi-
dence interval for b is

$ ( )/b z se b± −1 2α

where  is the estimate, and z1 ! "/2 is the 1 ! "/2 quan-$b
tile of the normal distribution.  The term se(b) is the
standard error of b, the estimated standard deviation of
the estimator.

The confidence interval for a is similar.

7.4.4.3 Test for Presence of Trend

Consider the two hypotheses defined by:

H0: p(t) is constant.
H1: p(t) = logit!1(a + bt),   b … 0.

Note, the null hypothesis H0 is true if p(t) = logit!1(a +
bt) and b is zero.  Therefore, with this choice of an
alternative hypothesis, the test of H0 is the same as a
test that b = 0, the test given above based on a confi-
dence interval for b.

As in Section 7.2.4.2, the hypothesis

H0: b = 0 ,
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the hypothesis of no trend, is rejected at level 0.10 if the
90% confidence interval for b is entirely on one side of
0.  The hypothesis is rejected at level 0.05 if the 95%
confidence interval is entirely on one side of 0, and so
forth.  Most software packages print out a significance
level at which the hypothesis that b = 0 is rejected, the
p-value for the trend.

This is different from the tests of Chapter 6.  Section
6.3.3.2.2 uses a different alternative hypothesis,

H1: p(t) is not constant .

It also uses a different test, the chi-squared test.  Section
6.3.3.2.2 commented that the test is not very powerful
against the alternative of a trend in p, because it consid-
ers such a broad class of possibilities as the alternative
hypothesis.

Consider Example 6.10, with the HPCI failures
during unplanned demands, as summarized in
Table 7.5.  In Section 6.3.3.2.2, the chi-squared test
rejected the hypothesis of constant p with p-value
0.77.  That is, the test found no evidence of noncon-
stant p.  The present test of b = 0 rejects this hypo-
thesis with p-value 0.30.  That is, this test still does
not reject the hypothesis of constant p.  However, it
notices the slightly falling values of p in Figure 6.38,
and therefore sees somewhat stronger evidence
against constant p than the chi-squared test did.

Incidentally, the test based on  and the Wilcoxon-$b
Mann-Whitney test for trend (Section 6.3.3.2.2) reach
very similar conclusions.

7.4.4.4 Confidence Intervals and Confidence
Bands

Confidence intervals for p(t) at a particular t and
simultaneous confidence bands valid for all t both are

based on the approximate normality of the MLEs $a

and .  The software finds an approximate$b
100(1 ! ")% confidence interval for logit[p(t)] as

(7.8)$ $ [ ( )]/a bt z se a bt+ ± × +−1 2α

where, as before,  z1 ! "/2 is the 100(1 ! "/2) percentile
of the standard normal distribution, and se(a + bt) is the
standard error, the estimated standard deviation of

.  The standard error depends on the value of t,$ $a bt+
and accounts for the fact that the MLEs and are$a $b
statistically correlated, not independent.  The confi-
dence interval for p(t) itself is found by inverting the
logit function.  If L and U are the lower and upper

confidence bounds for logit[p(t)], that is, for a + bt,
then

logit!1(L) = eL/(1 + eL)  and
logit!1(U) = eU/(1 + eU) (7.9)

are the corresponding confidence bounds for p(t).
Manipulation of Equation 7.8 allows the analyst to
convert from one degree of confidence to another, say
from 90% to 99%, by using different percentiles of the
normal distribution and the single standard error found
by the software.

As discussed in Section 7.2.4.5, a confidence interval is
valid at one t, and the band constructed from the
individual confidence intervals is not simultaneously
valid for all t.  A simultaneous 100(1 ! ")% confidence
band for logit[p(t)] is found by replacing z1 ! "/2 in
Equation 7.8 by

 ,[ ( )] /χ α1
2 1 2
− r

with r equal to the number of estimated parameters, 2 in
Equation 7.8.  This is exactly the value that was used in
Section 7.2.4.5.  The only difference is that there the
confidence band was for ln8(t) and here it is for
logit[p(t)].  The confidence band for 8(t) was found by
inverting the logarithm function, that is, by taking an
exponential.  The confidence band for p(t) is found by
inverting the logit function: if L and U are now used to
denote the lower and upper edges of the simultaneous
confidence band for logit[p(t)] at some t, the corre-
sponding points on the confidence band for p(t) are
given by Equation 7.9.

Figure 7.19 shows the data from Table 7.5, plotted
as in Figure 6.38 but now with the fitted trend line
and the simultaneous 90% confidence band overlaid.
The confidence band can easily contain a horizontal
line; this is consistent with the fact that the hypothe-
sis of constant p cannot be rejected.

7.4.4.5 Alternative Using Least-Squares Software

The model assumes that logit[p(t)] = a + bt .  Therefore,
as in Section 7.2.4.6, one might decide simply to use
least-squares software as follows.  First, estimate p for
each bin, based on only the data for that bin:

 .$ /p x ni i i=

Then fit logit( ) to a + bti by least squares.  The same$pi
problems that were mentioned in Section 7.2.4.6 must
be addressed here.
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Figure 7.19  Annual estimates of p, fitted trend line
and 90% confidence band for p(t), for data of Table
7.5.

First, if any observed failure count, xi, equals either 0 or

the demand count ni, the MLE  will be 0.0 or 1.0 for$p
that bin, and the logit will be undefined.  In the data of
Table 7.5, this happens for the final two years.  The
following ways around this have been proposed,
analogues of proposals in Section 7.2.4.6:

1. Instead of estimating pi by xi/ni, use (xi + ½)/
(ni + 1). This is equivalent to replacing the
MLE by the posterior mean based on the
Jeffreys noninformative prior.

2. Estimate pi by the posterior mean based on the
constrained noninformative prior.  In this case,
the constraint could be that the prior mean
equals the observed overall mean Eixi /Eini, or
equals a modification to guarantee a positive
number, (Eixi + ½)/(Eini + 1).

Such ways tend to reduce the trend slightly, because
they add a constant to all the failure and demand counts,
slightly flattening out any original differences.

The second point that must be considered is that the
variance of the estimator of p is not constant.   There-
fore, the following iteratively reweighted least-squares
method can be used.  Assume that p in the ith bin is
estimated by (Xi + ")/(ni + " + $).  If the simple MLE
is used, then " and $ are both zero.  If method 1 above
is used, then " = ½ and $ = ½.  If method 2 above is
used, then " and $ must be found from Table C.8.
Neter and Wasserman (1974, Eq. 9.51) state that the
asymptotic variance of logit(MLE of pi) is

1/[ni pi(1 ! pi)] .

The method given here is a generalization when " and
$ are not both zero, setting the weight wi to the inverse
of the asymptotic variance of the estimator.

Begin by assuming that p is constant, and let  be$pi

some simple estimate of p, the same for all i.  Fit
logit[(xi+")/(ni+*)] to a straight line with weighted least
squares, and weights

 .w
n p n p

n p p n
i

i i i i

i i i i

=
+ − +

− + +

( $ ) [ ( $ ) ]

$ ( $ )( )

α β

βα

2 2

2

1

1

Calculate the resulting estimates of pi,

 = logit!1( ) .$pi $ $a bti+

Recalculate the weights with these estimates, and refit
the data to a straight line using weighted least squares.
Repeat this process until the estimates stabilize.

The third and final point is that least-squares fitting
typically assumes that the data are approximately
normally distributed around the straight line.  In the

present context, this means that logit( ) is assumed to$pi

be approximately normally distributed.  This assump-
tion is acceptable if the number of failures in each bin
is not close to zero or to the number of demands.  The
variance of the normal distribution is then estimated
from the scatter around the fitted line.  This differs from
typical treatment of binomial data, where the mean
determines the variance.

A 90% confidence interval for p(t) at a particular t is
given by 

(7.10)logit { $ $ [ ( ) ( )]}.
− + ± × +1

0 95a bt t d se a bt

where t0.95(d) is the 95th percentile of Student’s t
distribution with d degrees of freedom, just as with 8(t)
in Section 7.2.4.6.  The software will report the value of
d.  It is the number of bins minus the number of esti-
mated parameters, 7 ! 2 in the example of Table 7.5.
The form of this equation is very similar to other
equations in Sections 7.2 and 7.4, although the esti-
mates and standard deviation are calculated somewhat
differently.

A simultaneous 90% confidence band has the same
form, but the multiplier t0.95(d) is replaced by

[2F0.90(r, d)]½ ,

where F0.90(r, d) is the 90th percentile of the F distribu-
tion with r and d degrees of freedom.



Trends and Aging

7-22

7.4.5 Comparison of Bayesian and 
Frequentist Estimation with 
Logit Model

When the Bayesian analysis uses very diffuse priors, the
conclusions of the two analyses will be numerically
similar.

The posterior median in Figure 7.18 is very close to
the fitted line (the MLE) in Figure 7.19.  The 90%
credible band in Figure 7.18 is narrower than the
simultaneous confidence band in Figure 7.19, be-
cause the simultaneous confidence band is based on
an inequality.  It would be close to the frequentist
bounds that are valid at any one t, if such a graph
were calculated.  The vertical lines in Figure 7.18,
representing credible intervals for p based on individ-
ual years of data, are generally close to the confi-
dence intervals in Figure 7.19, except for the years
with little data, 1992 and 1993.  For those two years,
the confidence intervals are quite wide, but the
credible intervals are shorter, under the influence of
the prior mean of 0.19.

Frequentist estimation relies on approximate normality
of the estimators, and therefore does not work well with
data having few observed events.  Bayesian estimation
obtains normal posteriors when the data set is large, but
does not fail entirely when the data set is small – it
merely obtains a different, non-normal, posterior.

Most frequentist software packages for analyzing trends
include calculations for investigating the goodness of fit
of the model, as will be seen in Section 7.4.6.  Current
Bayesian software may neglect this issue of model
validation.

7.4.6 Model Validation

The two assumptions for a time-dependent binomial
process are given at the beginning of Section 7.4.2.
The first assumption is difficult to test from data.  The
other assumption is that outcomes on distinct demands
are independent.  One kind of dependence is serial
dependence.  Positive serial dependence means that
failures tend to be followed by more failures, for
example if a failure is misdiagnosed the first time, or if
a single cause results in a number of failures before it is
corrected.  Negative serial dependence means that
failures tend to be followed by successes, for example
if the major cause of failure is wearout, at which time a
new component is installed (without any failures from
installation problems).

Positive serial dependence results in failures tending to
cluster together, with relatively long gaps between
failures.  When the data are collected into bins, this can
translate into unusually high or low event counts in
individual bins.  This can be discovered by goodness-
of-fit tests, considered below.  However, it is impos-
sible to decide, from the failure counts alone, whether
the outcomes are serially correlated or whether p is
going up and down.  The cause can be determined only
by an investigation to discover the failure mechanisms.

A negative serial dependence results in less-than-
expected variation in the event counts.  A goodness-of-
fit test will report a p-value near 1.0, indicating surpris-
ingly good fit, too good to be believable.

The final assumption made when fitting a trend model
is the form of the model.  Goodness-of-fit tests are
designed for testing this assumption.  In fact, a
goodness-of-fit test is an all-purpose test for the various
assumptions, although it is not good at deciding which
assumption may be violated.

7.4.6.1 Graphical Check for Goodness of Fit

The natural graphical check is to compare the observed
values to the fitted line.

Figure 7.18 and 7.19 each show such a plot for the
data of Table 7.5 (Example 6.10).  Either figure may
be used.  In Figure 7.18, each credible interval
overlaps the fitted trend line, and in Figure 7.19, the
90% confidence interval for each year overlaps the
fitted trend line.  Because no year deviates strongly
from the overall trend, the data appear consistent
with the assumption of the logit model.

The discussion at the end of Section 7.2.6.1 applies
here as well, concerning interpretation of a few inter-
vals’ failure to overlap the fitted line, and concerning
the need for an engineering assessment of any strange
patterns.

As with the loglinear model for 8(t), the residuals and
standardized residuals can be plotted for p(t).  Software
may report these as the “raw residuals” and the “Pear-
son chi-squared residuals,” respectively.

In the present context, the ith count, Xi, is assumed to be
binomial with mean nip(ti).  The ith residual, denoted ri,
is

.r x n p ti i i i= − $( )
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The variance of a binomial(n, p) random variable
equals np(1 ! p).  Therefore, the standardized residual
is

 .r n
i
p t

i
p t

ii / $ ( )[ $ ( )]1 −

These are also sometimes called the Pearson residuals
or chi-squared residuals.  A plot of the standardized
residuals against time may be helpful, as in Sec-
tion 7.2.6.1.

Also, a simple cumulative plot may be informative, as
it was in Section 7.2.6.1.  In the present example, the
cumulative plot is given in Figure 6.39, which shows no
pattern of interest.  In other data sets, such a plot might
not only show nonconstancy in p, but it might suggest
the form of the nonconstancy.

The cumulative plot shows failures per demand, reveal-
ing changes in p as a function of the demand count.
However, if the rate of demands is changing, as it is in
the present example, the plot can give a distorted
picture if p is regarded as a function of calendar time.
When p is constant, the issue of distortion is irrelevant
— a constant p is constant, whether it is regarded as a
function of demand count or of calendar time.

Just as in Section 7.2, lack of fit may be caused by
systematic variation or by extra-binomial variance,
additional sources of variation that are not accounted
for in the binomial model.  See the discussion in Sec-
tion 7.2.6.1.

7.4.6.2 Statistical Test for Goodness of Fit

7.4.6.2.1 Test Based on Binomial Maximum 
 Likelihood

Just as in Section 7.2, software packages that use
binomial maximum likelihood may give two measures
of goodness of fit, the Pearson chi-squared statistic,
denoted X2, and the deviance, denoted D.  The discus-
sion in Section 7.2.6.2.1 applies here as well.

For the HPCI failure data in Table 7.5, the logit
model seems to fit well.  The values of X2 and D are
2.12 and 2.91, respectively.  These are both in the
middle of a chi-squared distribution with five degrees
of freedom.  The degrees of freedom, five, equals the
number of bins, seven, minus the number of un-
known parameters, a and b.  The p-value for lack of
fit, based on X2, is 0.84, indicating very good fit.

7.4.6.2.2 Test Based on Weighted 
Least-Squares Fit

Consider fitting a function of the form

y = a + bt 

based on observations yi at times ti.  In the present
context, y equals logit(xi/ni).  As in Section 7.2, if the
model assumptions are correct, and if the Yis are ap-
proximately normally distributed, the weighted sum of
squares has approximately a chi-squared distribution.
The degrees of freedom d is the number of bins minus
the number of unknown parameters.  The number of
degrees of freedom is 5 in the HPCI-failure example.
The discussion in Section 7.2.6.2.2 applies here as well.

7.5 Discussion

This section ties together some specific methods given
in Chapters 6 and 7, showing the unifying formulations.
Readers who are happy simply using the earlier recipes
may skip this section.

7.5.1 Generalized Linear Models

Some software packages that implement the loglinear
and logit models do so in the framework of the general-
ized linear model.  Such models are described in a
highly mathematical way by McCullagh and Nelder
(1989), and in an introductory way in Appendix B-2 of
Atwood (1995).   This model has several elements, a
random component, a systematic component, and a
link, a function relating the random and the systematic
components.

• The random component consists of some independ-
ent observations Y1, ... , Ym.  This is thought of as
an m-dimensional vector, Y.  The examples of this
chapter have been the normalized Poisson event
count, Yi = Xi/si, and the fraction of binomial
failures on demand Yi = Xi/ni.  

• The systematic component is an m-dimensional
vector 0, with the ith element 0i related to explana-
tory variables, and to unknown parameters in a
linear way.  The example of this chapter has been
0i = a + bti, where a and b are unknown parameters
and the explanatory variable ti is the calendar time
or age for Yi.

• The link is a function g with

0i = g[E(Yi)] . (7.11)
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In this chapter, the links have been the log function
for Poisson data and the logit function for binomial
data.

Thus the two examples of this chapter have been the
Poisson example, with

ln[E(Xi /si)] = ln[8(ti)] = a + bti ,

and the binomial example, with

logit[E(Xi /ni)] = logit[p(ti)] = a + bti .

This is the terminology used by many statistical soft-
ware packages.  The analyst must specify the distribu-
tion for the random component, the form of the system-
atic component in terms of the unknown parameters and
the explanatory variables, and the link function.

Other software packages use a slight variant of this
terminology.  This is a generalized linear model with an
offset, replacing Equation 7.11 by

g[E(Yi)] = 0i + offseti . (7.12)

In the Poisson example, let Yi be the Poisson count
itself, Xi, not the normalized count Xi/si.  Then the
expected value of Yi is si8(ti), with ln8(ti) modeled as a
+ bti.  To satisfy Equation 7.12, let the offset term be
ln(si).  Then we have:

g[E(Yi)] = ln[E(Xi)]
= ln[si8(ti)]
= ln[8(ti)] + ln(si)
= a + bti + ln(si)
= 0i + offseti .

In this version of the model, the software package
requires the analyst to specify the distribution of the
random component, the form of the systematic compo-
nent, the link function, and the offset.  The disadvantage
of this formulation is the extra term that must be speci-
fied, the offset.  The advantage is that the distribution of
Xi is Poisson, whereas the distribution of Xi/si is hard to
specify because it does not have a standard name.

Much more elaborate models can be constructed in this
general framework, by adding more explanatory vari-
ables.  For example, both calendar time and age of the
individual component could be treated together in one
model as explanatory variables.  The explanatory
variables do not even have to be continuous.  Manufac-
turer, system, and plant could be used as discrete
explanatory variables.  The possibilities are limited only

by the availability of data.  However, such models go
beyond the limited scope of this handbook.

7.5.2 The Many Appearances of the 
Chi-Squared Test

In Chapter 6, the Pearson chi-squared test was used to
test whether 8 or p was constant.  In Chapter 7, 8 or p
is assumed to be nonconstant, yet the chi-squared test is
used anyway.  Also, the chi-squared test was used in
Section 6.6.2.3.2 to test whether durations had an
assumed distributional form.  

To see the unity in this apparent diversity, note first that
in every case the Pearson chi-squared statistic  has the
form

X2 = Ei ( observedi ! expectedi )
2 / expectedi .

To clarify possible confusion one must think about the
hypothesis being tested.  The big general theorem states
that when H0 is true, X2 has approximately a chi-squared
distribution, and the degrees of freedom is the number
of unknown parameters under H1 minus the number of
unknown parameters under H0.  The approximation is
valid when the degrees of freedom stays constant and
the size of the data set becomes large.  This is now
applied to the specific cases in this handbook.

Consider first Poisson data with event rate 8.  In
Chapter 6, the null and alternative hypotheses were:

H0:  8 is constant.
H1:  8 is not constant.

The data were partitioned into c cells.  These cells may
have corresponded to different sources of data, such as
different plants, or they may have resulted from binning
the data, for example, corresponding to c years.  If H0

is true there is one unknown parameter, the single value
of 8.  If, instead, H1 is true, there are c unknown param-
eters, the values of 8 in the different cells.  Therefore,
by the big general theorem, when H0 is true X2 is
approximately chi-squared with c ! 1 degrees of
freedom.  This is the result stated in Section 6.2.3.1.2.

Consider now the corresponding case with binomial
data.  The data fall into a 2×J contingency table.  The
value J corresponds to the J sources of data or J bins,
and the two rows correspond to failures and successes.
The null and alternative hypotheses were:

H0:  p is constant
H1:  p is not constant .
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If H0 is true, there is one unknown parameter, p.  If,
instead, H1 is true there are J unknown parameters,
corresponding to the J bins or data sources.  Therefore,
the big general theorem says that the degrees of free-
dom for X2 is J ! 1, just as stated in Section 6.3.3.1.2.

Consider now the setting of Section 7.2, with 8(t)
modeled as a + bt.  The time axis was divided into c
bins.  To test the goodness of fit, the hypotheses were:

H0:  8(t) = a + bt,
H1:  8 for each bin is arbitrary.

Under H0 there are two unknown parameters, a and b.
Under H1, the number of unknown parameters is the
number of bins, since each can correspond to a different
8.  Therefore, the big general theorem says that the
degrees of freedom, when testing H0, is c ! 2.  This
agrees with Section 7.2.6.2.  Recall that the chi-squared
distribution is approximate, for large data sets.  The
deviance was used as a backup check, to help ensure
that the data set was large enough.

The treatment of p in Section 7.4.6.2 is exactly parallel
to that of 8.

Finally, the chi-square test was used in Section 6.6.2.3.2
to test whether durations follow a distribution of an
assumed form.  A duration was denoted as T.  To be
specific, consider a case in which the assumed distribu-
tion of T had two unknown parameters.  Possibilities
include the lognormal(:, F) distribution and the
gamma(", $).  The hypotheses in this setting were:

H0:  T has a distribution of the assumed form.
H1:  T has some other distribution.

The data were partitioned into c bins, so that every
observed value of T fell into one bin.  Only the counts
in the bins were used, not the individual duration times.
If H0 is true, there are two unknown parameters (: and
F, or " and $, or whatever the two parameters of the
assumed distribution are).

If H1 is true, there are c ! 1 parameters.  These parame-
ters are Pr(T falls in bin 1), Pr(T falls in bin 2), etc.
There are c bins, but only c ! 1 parameters, because the
probabilities must sum to 1.0.  Thus, any c ! 1 parame-
ters determine the final one.

The big general theorem should say that the degrees of
freedom are (c ! 1) ! 2.  However, a subtle complica-
tion arises.  An assumption of the big theorem is that
the two unknown parameters of the distribution are
estimated using the maximum likelihood estimated

based on the bin counts.  In this setting, however, it is
far easier to estimate those parameters from the raw
data.  Therefore, as stated in Section 6.6.2.3.2, the
degrees of freedom fall somewhere between c ! 3 and
c ! 1.

To summarize this section, the Pearson chi-squared test
has many applications.  To avoid confusion, the analyst
must clearly specify the null hypothesis being tested and
the alternative hypothesis.

7.5.3 Nonparametric Estimators of 8(t)

The nonparametric estimators of a density in Sec-
tion 6.6.3 can also be used to estimate a time-dependent
event-occurrence rate 8(t).  In each case, the data
consist of a number of times, durations in Section 6.6.3
and event times in the present case.  The only difference
is the scale: a density integrates to 1.0, and an occur-
rence rate does not.  To use an estimator from Section
6.6.3 in the occurrence-rate setting, multiply the esti-
mate by the total number of observed events.  This is
the correct scale correction.

The estimators in Section 6.6.3.1.1 showed a problem
at 0, estimating a positive density to the left of zero
even though a duration time cannot be negative.  This
problem was corrected by reflecting the data around 0,
and initially using a data set that contained both the true
data and the mirror images (a value at !t for every
value of t).  Such a problem also occurs with estimation
of 8(t).  If data are collected in a time period from J0 to
J1, simple kernel estimates will have this problem at
both ends.  To correct this problem, reflect the data at
each end, so that artificial data have been constructed
beyond J0 on the left and beyond J1 on the right.
Construct the density estimate based on this augmented
data set.  Then truncate the density — set it to zero
outside the observation interval, and multiply it by 3 so
that it again integrates to 1.0.  Finally, convert it from
a density estimate to an estimate of the Poisson intensity
by multiplying it by the number of observed events.
When interpreting the resulting graphed function, be
aware that the estimate will be flat at the two ends, by
the way the estimate was constructed.  The slope of the
line at the two ends cannot be used to draw inferences
about whether the Poisson intensity is changing.

This method was applied to the data of Table 7.3
(Example 2.1), unplanned scrams at a new reactor.
The normal kernel was used.  The 34 event dates
were converted to consecutive days, and the stan-
dard deviation was 874 days.  The formula 

h = 1.06 F n!1/5
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Figure 7.20  Estimate of 8(t) using standard normal
kernel, with bandwidth h = 400.
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Figure 7.21  Estimate of 8(t) using standard normal
kernel, with bandwidth h = 200.

resulted in h = 457 days.  This is only a very prelimi-
nary suggested value for two reasons:  F was
estimated, not known, and the true shape of the
intensity function is not close to normal.  Because it
is wise to undersmooth rather than oversmooth, a
value h = 400 days was used.

The estimated Poisson intensity function, 8(t), is
shown in Figure 7.20.  The calculations were per-
formed in terms of calendar days, and converted to
reactor-critical-years by assuming 0.82 critical years
per calendar year.  This is the average of the values
shown in the right column of Table 7.4.

The curve in Figure 7.20 can be compared with the
exponential curve in Figure 7.12.  The curve using
the kernel estimator follows the ups and downs of the
data more closely than does the simple exponential
curve.  However, the kernel-estimator curve at the
beginning of 1987 is only 17.4, substantially below
the simple maximum likelihood estimate of 26.8,
based on the 1987 data only.  Two factors contribute
to this.  First, the bandwidth of h = 400 days is
apparently too wide.  The learning period at the plant
lasted less than one year, so a smaller bandwidth

would better reflect the rapid learning that was taking
place.  Second, the conversion from calendar time to
reactor-critical-years used the average value for nine
years, 0.82.  In fact, the first calendar year had only
0.71 critical years.  Therefore, the estimate during
the first year should be about 15% larger than
shown.

Figure 7.21 shows the kernel estimator with a smaller
bandwidth, h = 200 days.  It follows the rapid drop in
the scram frequency at the beginning of the plant’s
history much more closely.  It also is more sensitive
to small, perhaps random, clusters of events later in
the plant’s history.  The constant conversion rate of
0.82 reactor-critical-years per calendar year has
been used, with the same effect as in the previous
figure.

This example has illustrated both some advantages and
some difficulties of nonparametric estimation of a
Poisson intensity function.  The same advantages and
difficulties were seen for nonparametric density estima-
tion.  See Section 6.6.3 for more discussion of these
issues.
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Figure 8.1  Hierarchical model for Poisson data.

8.  PARAMETER ESTIMATION USING DATA 
FROM DIFFERENT SOURCES

8.1 The Hierarchical Model

This chapter contains the most complex mathematics of
the handbook, although most of the formulas can be
skipped by those who use preprogrammed software.
The formulas are of interest primarily to those who
must write the programs.  Comments throughout the
chapter state which sections can be skipped by most
readers.

In this chapter, data come from a number of similar, but
not identical, sources.  For simplicity, the discussion is
in terms of data from a number of nuclear power plants.
However, the ideas can be applied much more widely.

The situation is described by a hierarchical model,
with two levels.  The first level models the plants as a
family, with the members resembling each other.  The
second level models the data that are generated at each
plant.

To be more specific, suppose that initiating events are
to be modeled, so the parameter of interest is 8.
Level 1 of the model says that 8 varies among the m
plants, but only to a limited degree.  Thus, the plants are
not identical, but they resemble each other.  This is
modeled by a distribution g that describes the popula-
tion variability.  Before any data are generated, the
distribution g is invoked m times, producing values 81

through 8m.  These values of 8i are independently
generated, but they all come from the same distribution,
g.  For each i, 8i is assigned to plant i.  That is Level 1
of the hierarchical model.  It is shown on the left side of
Figure 8.1.

Level 2 of the model says that, conditional on the 8i

values, the plants independently produce data.  Thus,
for each i, plant i is observed for time ti, and it experi-
ences a random number of initiating events, Xi, with Xi

having a Poisson(8iti) distribution.  This is shown on the
right side of Figure 8.1.

The population-variability distribution g could be a
gamma(", $) distribution, which has the computational
advantage of being conjugate to the Poisson distribu-
tion.  But that is not the only allowed distribution.  It
could also be a lognormal(:, F2) distribution, or some
other distribution.

The data consist of the observation times, t1 through tm,
which are known and treated as fixed, and the event
counts, x1 through xm, which are treated as randomly
generated.  The unknown parameters consist of 81

through 8m, as well as any unknown parameters of g.
These parameters of g could be " and $, or : and F2, or
some other parameters, depending on the assumed form
of g.  To emphasize the contrast between the two levels,
the parameters of g, such as " and $ or : and F2, are
sometimes called hyperparameters.

When the data instead are failures on demand, the
situation is very similar.  The population-variability
distribution generates parameters p, one for each plant.
The distribution g might be a beta distribution, or it
might be some nonconjugate distribution, such as
(truncated) lognormal or logistic-normal.  The unknown
parameters consist of the parameters of g, and the
parameters p1 through pm.  The data consist of the
counts of failures and demands at each plant, (x1, n1)
through (xm, nm).  Examples 8.1 and 8.2 illustrate the
two types of data.
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Example 8.1 Initiating events from many plants.

The number of unplanned scrams at power, x, and the number of 1000 critical hours, t, are listed below for one
calendar year (1984) at 66 plants.  The data are from Martz et al. (1999).

Plant x t Plant x t Plant x t Plant x t

Arkansas 1
Arkansas 2
Beaver Valley 1
Big Rock Point
Brunswick 2
Callaway
Calvert Cliffs 1
Cook 1
Cook 2
Cooper Station
Crystal River 3
Davis-Besse
Diablo Canyon 1
Dresden 2
Dresden 3
Duane Arnold
Farley 1

3
12
4
2
3

12
5
3
7
3
2
4
5
3
8
6
2

6.2500
7.6433
6.4516
6.8966
2.6549
1.5038
7.5758
8.1081
5.3030
6.0000
8.3333
5.5556
1.0846
6.5217
3.8835
6.5934
6.8966

Farley 2
Fort Calhoun
Ginna
Grand Gulf
Haddam Neck
Hatch 1
Hatch 2
Indian Point 2
Indian Point 3
Kewaunee
LaSalle 1
LaSalle 2
Maine Yankee
McGuire 1
McGuire 2
Millstone 1
Millstone 2

6
1
1
7
3
7
7
4
7
4
9

11
7
4

16
0
3

8.3333
5.2632
6.6667
2.0896
6.5217
5.6452
3.1111
4.7059
6.9307
7.5472
6.2937
5.4726
6.6667
6.0606
6.9869
6.9902
8.5714

Monticello
North Anna 1
North Anna 2
Oconee 1
Oconee 2
Oconee 3
Oyster Creek
Palisades
Pt. Beach 1
Pt. Beach 2
Prairie Island 1
Prairie Island 2
Quad Cities 1
Quad Cities 2
Robinson 2
Salem 1
Salem 2

0
8
4
3
0
4
2
1
0
0
4
0
3
2
0

10
10

0.8106
4.7619
6.1538
7.5000
8.7840
6.5574
1.6949
1.5625
6.4201
7.5442
8.3333
7.8440
4.7619
6.8966
 0.6161
2.6738
3.3898

San Onofre 2
San Onofre 3
St. Lucie 1
St. Lucie 2
Summer
Surry 1
Surry 2
Susquehanna 1
Susquehanna 2
Turkey Point 3
Turkey Point 4
Vermont Yank.
Wash. Nucl. 2
Zion 1
Zion 2

5
7
6
9

11
8

14
7
7
8
9
2

23
6
7

5.2632
5.0725
5.5556
7.3770
5.5556
5.2980
7.4468
6.5421
2.1472
7.3394
5.0847
7.1429
4.3643
6.3158
6.3063

Example 8.2 Failure to start of AFW motor-driven segments at many plants.

The number of failures to start on unplanned demands for motor-driven segments of the auxiliary feedwater
(AFW) system are tabulated for 68 plants, for 1987-1995.  Here, x is the number of failures and n is the number
of demands.  Common-cause failures are excluded.  The data are from Poloski et al. (1998, Table E-4).

Plant x n Plant x n Plant x n Plant x n

Arkansas 1
Arkansas 2
Beaver Valley 1
Beaver Valley 2
Braidwood 1
Braidwood 2
Byron 1
Byron 2
Callaway
Calvert Cliffs 1
Calvert Cliffs 2
Catawba 1
Catawba 2
Comanche Pk 1
Comanche Pk 2
Cook 1
Cook 2

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 14
   9
 24
 43
 13
 24
 11
 26
 57
 12
 15
 41
 89
 66
 14
 18
 36

Crystal River 3
Diablo Canyon 1
Diablo Canyon 2
Farley 1
Farley 2
Fort Calhoun
Ginna
Harris
Indian Point 2
Indian Point 3
Kewaunee
Maine Yankee
McGuire 1
McGuire 2
Millstone 2
Millstone 3
North Anna 1

 1
 0
 0
 0
 0
 0
 0
 0
 1
 2
 0
 0
 0
 0
 1
 0
 0

 16
 46
 30
 34
 54
   5
 28
 98
 24
 32
 26
 23
 45
 44
 11
 54
 20

North Anna 2
Oconee 1
Oconee 2
Oconee 3
Palisades
Palo Verde 1
Palo Verde 2
Palo Verde 3
Point Beach 1
Point Beach 2
Prairie Island 1
Prairie Island 2
Robinson 2
Salem 1
Salem 2
San Onofre 2
San Onofre 3

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 0
 0
 0

 18
 18
 18
 12
 13
   7
 12
   9
   8
 16
   3
   7
 28
 24
 32
 13
 17

Seabrook
Sequoyah 1
Sequoyah 2
South Texas 1
South Texas 2
St. Lucie 1
St. Lucie 2
Summer
Surry 1
Surry 2
Three Mile Island 1
Vogtle 1
Vogtle 2
Waterford 3
Wolf Creek
Zion 1
Zion 2

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

  17
  30
  41
  69
  87
  35
  21
  24
  26
  32
    6
103
  45
  38
  51
  13
    8

In Example 8.1, most of the plants experience at least
one initiating event, and the total number of events is
361.  Thus, the data set is large, and the methods given
below perform well.  Example 8.2, on the other hand, is
a small data set.  That is, most of the plants experienced
no failures, and the total number of failures is only 6.
This example was deliberately chosen for this handbook
to illustrate problems that can occur with sparse data.

Two methods are given in Sections 8.2 and 8.3 for
analyzing data by means of a hierarchical model.  The
results of each analysis include both an estimate of the
population-variability distribution, g, and estimates of
all the plant-specific parameters, 8i or pi.
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8.2 The Parametric Empirical
Bayes Method

8.2.1 General Approach

In spite of the name, this is not a truly Bayesian meth-
od.  Instead, it is a kind of hybrid, involving a non-
Bayesian step followed by a Bayesian step.

Step 1. Look at the variability in the data from the
plants, and estimate g.  That is, based on the
data from all the plants, estimate the parame-
ters of g by maximum likelihood, and obtain
the resulting estimate of the distribution.  Call
the estimate .$g

Step 2. Now treat  as a prior distribution.  Perform$g
the usual Bayesian update, with the prior
distribution  and data from a single plant,$g
to get the posterior distribution for the plant-
specific parameter, 8i or pi.

Thus, the method yields both an estimate of the popula-
tion variability and plant-specific estimates at each
plant.

The method as just explained underestimates the
uncertainty in the answers, because it treats as if it$g
were equal to the true distribution g.  Therefore, the
best implementations of the empirical Bayes method
add a final adjustment to Step 2, which makes the
plant-specific posterior distributions somewhat more
diffuse.  This largely accounts for the inaccuracy in
equating  to g.$g

The name “empirical Bayes” follows from the two
steps.  The plant-specific estimates are found in a
Bayesian way, by updating a prior distribution with
plant-specific data.  However, the prior is not based on
prior data or on prior belief, but instead is based on the
existing data — the prior is determined empirically.

Step 1 can be carried out in a simple way only if the
distributions have convenient forms.  Thus, parametric
empirical Bayes estimation assumes that g is conjugate
to the distribution of the data at any plant.  That is, g is
a gamma distribution when the data are initiating
events or other data from a Poisson process, and g is a
beta distribution when the data are failures on demand.
This is a limitation to the method.  One reason for
introducing the hierarchical Bayes method, in Section
8.3, is to overcome this limitation.

Some people might object that the method double
counts the data.  It uses the data to decide on the prior
distribution, and then it uses the same data again to
update the prior to obtain the plant-specific estimates.
There are two responses to this:  (1) The objection is
not important in practice, unless the number of plants in
the study is very small, or if a small number of plants
dominate the data.  If no single plant contributes much
to the estimate of g, then there is very little double
counting that influences the final estimate for that plant.
(2) The hierarchical Bayes method, given in Section
8.3, will avoid this difficulty entirely.

For failures on demand, Martz et al. (1996) give a
tutorial on the empirical Bayes method, illustrated with
nuclear power plant (NPP) data.  Siu and Kelly (1998)
also explain the method as part of their tutorial article.
Carlin and Louis (2000) give a full treatment, including
worked-out examples.

8.2.2 MLE Equations for the Gamma-
Poisson Model

Readers who do not need to know the equations can
skip directly to Section 8.2.5.

The gamma-Poisson model is used for initiating events.
The data at plant i consist of a count of events, xi, in
time ti.  Conditional on the plant-specific parameter 8i,
it is assumed that xi was generated from a Poisson(8iti)
distribution. However 8i was generated from the distri-
bution g, which is assumed to be gamma(", $).  The
equations for the maximum likelihood estimates
(MLEs) of " and $ are now given.

The conditional distribution of X, conditional on 8, is
Poisson.  However, the unconditional distribution of
X, when 8 might be any value generated by the
population-variability distribution g, is more compli-
cated.  It can be shown that the unconditional distribu-
tion equals the distribution conditional on 8, averaged
over the possible values of 8.  In equation form, this is

.Pr( | , ) Pr( | ) ( | , )X x X x g d= = =∫α β λ λ α β λ

Substituting the formulas for the Poisson and gamma
distributions, it can be shown that this equals

(8.1)

Pr( | , )

( )
! ( )

( / ) ( / ) ( )

X x

x

n
t tx x

=

= + + − +

α β
α

α
β β α       .

Γ
Γ

1
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As mentioned in Section 6.2.3.5, Equation 6.8, this is
the gamma-Poisson distribution, also often called the
negative binomial distribution. This distribution is not
conditional on 8.  Therefore, 8 does not appear in this
expression.  Instead, Equation 8.1 gives the probability
of seeing x events in time t at a plant with a randomly
assigned 8. 

To find the MLEs of " and $, write the product of
terms of the form of Expression 8.1, using values (xi, ti)
for i from 1 to m.  That product is the joint uncondi-
tional likelihood of the data.  Take the logarithm of that
expression and maximize it.  There are several ways to
accomplish this.

One approach is to maximize it numerically as a
function of two variables, using some version of New-
ton’s method.  This is the approach of Siu and Kelly
(1998).  The derivatives of the log-likelihood, used in
performing the maximization, are given below, as
stated by Engelhardt (1994).  Here ln L denotes the
logarithm of the likelihood.

∂
∂α

ψ α ψ α βln [ ( ) ( ) ln( / )]L x ti i
i

m

= + − − +
=
∑ 1

1

 .
∂

∂β β
α
β

ln L x
x

t
ti

i

i
i

i

m

= − − +
+

⎡

⎣
⎢

⎤

⎦
⎥

=
∑1

1

The function R is the digamma function, R(u) =
(d/du)ln'(u).  It is built into many computer packages.
Because xi is an integer, the expression involving R can
be rewritten as

 . (8.2)ψ α ψ α
α

( ) ( )+ − =
+ −=

∑x
ji

j

xi 1

11

A second approach reduces the problem to solving one
equation, as follows.  At the maximum of the log-
likelihood, the two derivatives are equal to zero.
Therefore, do the following:

1. Set the two derivatives equal to zero.  The solu-

tions, to be found, are  and .$α $β
2. Solve the second equation for , as a function of$α

.$β
3. Substitute this expression into the first equation.

4. Solve the resulting equation numerically for .$β

5. Calculate  from the numerical value of .$α $β

The necessary equations to carry out these steps are the

following.  The equation for , as a function of , is$α $β

 . (8.3)$
$

$ $
α β

β β
=

+

⎛

⎝
⎜

⎞

⎠
⎟

+
⎛

⎝
⎜

⎞

⎠
⎟

= =
∑ ∑x

t

t

t
i

ii

m
i

ii

m

1 1

Substitute Equation 8.3 into 

[ ( $ ) ( $ ) ln( / $)]ψ α ψ α β+ − − + =
=
∑ x ti i
i

m

1 0
1

and solve that equation numerically for .  Having$β

obtained the numerical value of , find  from$β $α
Equation 8.3.

Sometimes the equations do not have a solution.  If the
plants do not appear to differ much — for example, the
naive plant-specific estimates xi /ti are all similar — the
maximum likelihood estimate of g may be degenerate,
concentrated at a single point.  That says that the plants
appear to have a single common 8.  Engelhardt (1994)
recommends aborting the estimation process, not trying
to fit a model, if the estimate of $ becomes greater than
Eti during the iterations.  The population-variability
distribution g would be gamma(", $), with the second
parameter greater than Eti.  But simply pooling the data
(and using a Jeffreys prior) would result in a gam-
ma(Exi + ½,  Eti) posterior distribution.  Thus the
empirical Bayes distribution would produce a between-
plant distribution that is more concentrated (larger
second parameter) than the distribution when the plant
data are pooled.  This is not the intent of the hierarchi-
cal model.

8.2.3 MLE Equations for the 
Beta-Binomial Model

The beta-binomial model is used for failures on de-
mand.  The data at plant i consist of a count of failures,
xi, and demands, ni.  Conditional on the plant-specific
parameter pi, it is assumed that xi was generated from a
binomial(ni, pi) distribution. However, pi was generated
from the distribution g, which is assumed to be beta(",
$).  The equations for the MLEs of " and $ are now
given.

The conditional distribution of X, conditional on p, is
binomial.  However, the unconditional distribution of
X, when p might be any value generated by the
population-variability distribution g, equals the distribu-
tion conditional on p, averaged over the possible values
of p.  That is,
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.Pr( | , ) Pr( | ) ( | , )X x X x p g p dp= = =∫α β α β

Substituting the formulas for the binomial and beta
distributions, and using some standard identities
relating the beta function and the gamma function, it
can be shown that this equals

Pr( )

!

!( )!

( )

( )

( )

( )

( )

( )

X x

n

x n x

x n x

n

=

=
−

+ + − +
+ +

Γ
Γ

Γ
Γ

Γ
Γ

α
α

β
β

α β
α β

  .

This is called the beta-binomial distribution.  If both x
and n are integers, this can be rewritten without the
gamma function, as follows:

Pr( )

!

!( )!
( ) ( ) ( )

X x

n

x n x
j j j

j

n x

j

x

j

n

=

=
−

+ + + +
=

− −

=

−

=

−

∏∏ ∏α β α β
0

1

0

1

0

1

  .

As just stated, this is valid if x and n are integers.  Are
they not always integers?  No, they are not, if the data
set only gives an estimate of the number of demands,
which is not necessarily an integer.  In that case, the
expression with the gamma function is the only one that
can be used.

The likelihood is the product of terms of one of these
forms, containing values (xi, ni) for i = 1 to m.  To find
the MLE, take the logarithm of the likelihood and
maximize it.

The maximization can be done in a variety of ways.
One approach, following Atwood (1994), does not deal
with " and $ directly.  Instead, it reparameterizes,
working with

* = " + $   and
: = "/*  .

The intuitive reason for this reparameterization is that
: is the mean of the binomial distribution, and in most
models the mean is one of the easiest things to esti-
mate.  The letter * was chosen as a mnemonic for
“dispersion,” because the variance of the binomial
distribution is :(1 ! :)/(* + 1).  Thus, * is related
directly to the variance.  Recall that in Section
6.3.2.2.2, the prior and posterior values of " + $, which
we are calling * here, were interpreted as the prior and
posterior number of demands.

After working with : and *, and finding the MLEs of
these parameters, we will translate back to find the

MLEs of " and $, using the equations:

" = :*
$ = (1 ! :)* . 

The MLE is found by setting the derivatives with
respect to : and * to zero.  After some manipulation,
the equations can be expressed as

(8.4a)
{ }

{ }
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ψ µ δ ψ µ δ
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(8.4b)
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= + −
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i
j
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   .

Here R is the digamma function, the derivative of ln',
just as in Section 8.2.2.  If xi and ni are integers for all
i, Equation 8.2 can be used to rewrite Equation 8.4 as

(8.5a)

1

1

1

0

1

1

0

1

1

µδ

µ δ

+
∑

⎡

⎣
⎢

⎤

⎦
⎥∑

=
− +

∑
⎡

⎣
⎢

⎤

⎦
⎥∑

=

−

=

=

− −

=

j

j

j

x

i

m

j

n x

i

m

i

i i

( )

and

(8.5b)
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The Equations 8.4 or 8.5 must be solved for : and *.
One method, suggested by Atwood (1994) is to begin
with a trial value of *.  Solve Equation 8.4a or 8.5a
numerically for :.  This typically needs only a few
iterations.  Substitute this value into Equation 8.4b or
8.5b, and solve the resulting equation for *.  Continue
alternating between the two equations until the esti-
mates converge.

The estimates do not always converge.  If the plants
have very similar data, the maximum likelihood esti-
mate of g may be concentrated at a single point, degen-
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erate.  This would say that the plants all have the same
p.  Atwood (1994) recommends aborting the iterations
if the value of * becomes greater than Eni.  Allowing *
to be greater than Eni would produce a population-
variability distribution that is more concentrated than
the distribution corresponding to simply pooling the
data.

8.2.4 Adjustment for Uncertainty in the 
Estimate of g

As mentioned above, the method as presented so far
underestimates the uncertainty in the final answers,
because it does not account for the uncertainty in .$g
Kass and Steffey (1989) present a correction to the
final estimates, to approximately account for this
uncertainty.  The plant-specific posterior means are
unchanged, but the posterior variances are increased
somewhat.  Kass and Steffey (1998) state that the
adjustment is very important if there are few data
subsets (plants, in the present discussion) and many
observations (initiating events or demands).  Con-
versely, the adjustment is unimportant when there are
many data subsets and few observations.  No harm is
done by automatically applying the adjustment in every
case.  The formulas are given here.

8.2.4.1   Equations for the Gamma-Poisson Case

With the gamma-Poisson distribution, it is computa-
tionally advantageous to reparameterize in terms of :
= "/$ and ".  Denote the maximum likelihood estima-
tors for the hyperparameters : and " by  and .  It$µ $α
turns out that these estimators are asymptotically
uncorrelated, causing certain terms in the formulas to
be zero.

The method as given in Section 8.2.2 finds the esti-

mates  and , which can be reparameterized$α $β

as  and .  These are the estimated parame-$ $ / $µ α β= $α
ters of the gamma prior distribution g.  The method
then updates the estimated prior by plant-specific data.
The posterior distribution of 8i is also a gamma distri-
bution, with posterior mean

(8.6)E
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ti
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i
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The Kass-Steffey adjustment increases the variance to

(8.7)
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A covariance term would normally also be present, but
this term is zero when the parameterization is in terms
of : and ".

We now develop the formulas that must be substituted
into Equation 8.7.  From Equation 8.6, the derivatives
of  are E ipost ( )λ

   and
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From the asymptotic theory of maximum likelihood
estimation, the variances are found as follows.  The
information matrix, J, is the negative of the matrix of
second derivatives of the log-likelihood:

 (8.8)J
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evaluated at  and .  The inverse of this matrix is$µ $α
asymptotically equal to the variance-covariance matrix:
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If all the xi values are integers, the difference of ψ
terms can be rewritten using Equation 8.2, and the
difference of derivatives  can be written algebra-′ψ
ically, avoiding use of a special function.

Because the off-diagonal elements are zero, the inverse
consists of the inverses of the diagonal terms, and it
follows that

    andvar( $ ) /µ = 1 11J

 .var( $ ) /α = 1 22J

The final step of the empirical Bayes method is to
substitute the expressions just found into the Kass-
Steffey adjustment for the posterior variance, Equa-
tion 8.7.  Then approximate the posterior distribution
by a gamma distribution having the original posterior
mean and the adjusted posterior variance.  An example
will be given below.

8.2.4.2   Equations for the Beta-Binomial Case

As in Section 8.2.3, we parameterize in terms of : =
"/(" + $) and * = " + $.  Denote the maximum likeli-

hood estimators by  and .  Although these estima-$µ $δ
tors are asymptotically not exactly uncorrelated, as was
the case for the gamma-Poisson model, they are nearly
uncorrelated.  The equations are given by Atwood
(1995).

The method as given in Section 8.2.3 finds the esti-

mates  and , the estimated parameters of the beta$µ $δ
prior distribution g.  The method then updates the
estimated prior by plant-specific data.  The posterior
distribution of pi is also a beta distribution, with
posterior mean
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The variances and covariance are found from inverting
the matrix in Equation 8.8, with *  used now instead of
".  The terms can be found as follows.  Define

[ ]S xi
i

m

1
1

= ′ − ′ +
=
∑ ψ µδ ψ µδ( $ $) ( $ $ )

[ ]S n xi i
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1
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∑ ψ µ δ ψ µ δ(( $ ) $) (( $ ) $ )

 .[ ]S ni
i

m

3
1

= ′ − ′ +
=
∑ ψ δ ψ δ( $) ( $ )

Then the information matrix is given by

J S S11
2

1 2= +$ ( )δ
J S S S22

2
1

2
2 31= + − −$ ( $ )µ µ

 .J J S S12 21 1 21= = − −$ $ ( $ ) $µ δ µ δ   

The variances and covariance follow from standard
formulas for inverting a 2×2 matrix.  Define the deter-
minant

D = J11J22 ! (J12)
2 .

Then we have

var( $ ) /µ = J D22

var( $) /δ = J D11

 .cov( $ , $) /µ δ = −J D12

To complete the Kass-Steffey adjustment, substitute the
above expressions into the equation for the adjusted
variance, Equation 8.10.  Then find the beta distribution
having the posterior mean and the adjusted posterior
variance.  Use this as the approximate posterior distri-
bution for pi.

8.2.5 Application to Examples

The parametric empirical Bayes method is now illus-
trated with Examples 8.1 and 8.2.  First, a chi-squared
test will be performed, to test whether the plants can be
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Ginna
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Monticello

Point Beach 1

Millstone 1

Point Beach 2

Prairie Island 2

Oconee 2

Events/1000-Critical-Hours GC00 0419 1

Figure 8.2  Plant-specific MLEs and 90% confidence
intervals for 8.

Industry

Callaway

Wash. Nuclear 2

Salem 1

Diablo Canyon 1

Grand Gulf

Susquehanna 2

Salem 2

McGuire 2

Hatch 2

LaSalle 2

46 other plants

Quad Cities 2

Vermont Yankee

Fort Calhoun

Crystal River 3

Ginna

Point Beach 1

Millstone 1

Point Beach 2

Prairie Island 2

Oconee 2

Events/1000-Critical-Hours GC00 0419 2

1.E-03 1.E-02 1.E-01 1.E-00 1.E+01 1.E+02

Figure 8.3  Plant-specific posterior means and 90%
credible intervals for 8.

pooled.  In each example, the difference between plants
will be found to be either statistically significant or
very close to statistically significant.  Then plant-
specific confidence intervals will be found, each based
only on the data for a single plant.  Then the empirical
Bayes method will be used, and the resulting 90%
credible intervals will be shown, based on the plant-
specific posterior distributions, using the Kass-Steffey
adjustment.  The plant-specific intervals resulting from
the empirical Bayes analysis will be compared to the
(less sophisticated) plant-specific confidence intervals.

8.2.5.1   Example 8.1, Initiating Events

To test poolability of the plants in Example 8.1, the
Pearson chi-squared test was performed, as pre-
sented in Section 6.2.3.1.2.  The test statistic X2 was
equal to 378.5.  Because there were 66 plants, the
value of X2 should be compared to a chi-squared
distribution with 65 degrees of freedom.  The value
of 378.5 is very far out in the tail of the chi-squared
distribution, off the table.  Thus, the evidence is
extremely strong, beyond question, that the plants
do not all have the same 8.

To show this graphically, 90% confidence intervals
for 8 were plotted, with each confidence interval
based on the data from a single plant.  These are
shown in Figure 8.2.    Because t has been written in
terms of 1,000 critical hours, the units of 8 are events
per thousand critical hours.   The order of the plants
is not alphabetical, but instead is by decreasing
estimate of 8.  Because the example has so many
plants, only the plants with the 10 highest and 10
lowest estimates are individually identified in the
figure.

A 90% confidence interval is plotted at the top of the
plot for the pooled industry data.  Of course the
interval is too short to be realistic, because pooling
of the data is completely unjustified in this example.
In fact, the interval is too short even to be visible.
Nevertheless, the overall pooled mean is a useful
reference value for comparison with the individual
plant results.  For this reason, a vertical dashed line
is drawn through the pooled mean.

Because the plant-specific estimates differ so great-
ly, the figure uses a logarithmic scale.  This means
that some of the point estimates, those with zero
values, cannot be plotted.

Figure 8.3 is based on the empirical Bayes method.
For each plant, the mean and 90% credible interval
are shown, based on the posterior distribution and
the Kass-Steffey adjustment.  The mean and 90%
interval for the industry are also plotted, and a
vertical dashed line is drawn through the mean.
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The most striking feature seen by comparing the two
figures is that the empirical Bayes estimates vary
less from each other than do the MLEs.  Of course,
if a plant has no events, the lower confidence limit is
zero, and any Bayesian method will give a non-zero
lower limit.  Such a difference appears enormous
when plotted on a logarithmic scale.  However, the
effect is seen not only at the bottom of Figures 8.2
and 8.3 but also at the top: the largest plant-specific
posterior means are closer to the industry average
than are the corresponding MLEs.  Indeed, just as
was seen for Bayes methods in general, the empiri-
cal Bayes method gives posterior means that are
between the MLEs and the industry (i.e., the prior)
mean.

Those who wish to make some detailed compari-
sons can find a few numerical values listed in Tables
8.1 through 8.3.

Table 8.1 Portion of frequentist analysis 
results for Example 8.1.

Plant     x,   t MLE and 90% 
confidence intervala

Industry

Callaway
Wash. Nuc. 2
Diablo Can. 1
Salem 1
Grand Gulf

Pt. Beach 2
Prairie Isl. 2
Oconee 2

361, 374.229

  12, 1.5038
  23, 4.3643
    5, 1.0846
  10, 2.6738
    7, 2.0896

    0, 7.5442
    0, 7.8440
    0, 8.7840

(0.883, 0.965, 1.05)

  (4.60, 7.98, 12.9)
  (3.60, 5.27, 7.47)
  (1.82, 4.61, 9.69)
  (2.03, 3.74, 6.34)
  (1.57, 3.35, 6.29)

   (0.0, 0.0, 0.397)
   (0.0, 0.0, 0.382)
   (0.0, 0.0, 0.341)

a.  Format is (lower bound, MLE, upper bound).

The order of the plants is not exactly the same in
Figures 8.2 and 8.3.  The reason is that estimates
for different plants are pulled toward the industry
mean by different amounts.  This can cause some
rearrangement of the ranking of the plants.  For
example, Salem 1 and Diablo Canyon 1 appear in
reverse order in the two figures (and in Tables 8.1
and 8.3).  The reason is that Diablo Canyon 1 has
about half as much data (5 events in 1,085 hours) as
Salem 1 (10 events in 2,674 hours).  Therefore
Diablo Canyon 1 is pulled more toward the industry
mean.

We notice also, by comparing Tables 8.2 and 8.3,
that the Kass-Steffey adjustment is very small in this
example.  The data set is so large that g can be
estimated quite well.  Any error in equating the
estimate to the true distribution is minor, as reflected
in the small effect of the Kass-Steffey adjustment.

Table 8.2 Portion of empirical Bayes 
analysis, without Kass-Steffey
adjustment.

Plant Gamma 
parameters,
", $

Posterior mean and
90% credible interval a

Industry

Callaway
Wash. Nuc. 2
Salem 1
Diablo Can. 1
Grand Gulf

Pt. Beach 2
Prairie Isl. 2
Oconee 2

  1.39, 1.211

13.39, 2.715
24.39, 5.575
11.39, 3.885
  6.39, 2.296
  8.39, 3.301

  1.39, 8.755
  1.39, 9.055
  1.39, 9.995

(0.118, 1.15, 3.07)

  (2.94, 4.93, 7.34)
  (3.03, 4.37, 5.93)
  (1.66, 2.93, 4.49)
  (1.25, 2.78, 4.81)
  (1.29, 2.54, 4.14)

(0.0164, 0.159, 0.424)
(0.0158, 0.154, 0.410)
(0.0143, 0.139, 0.372)

a.  Format is (lower bound, mean, upper bound).

Table 8.3 Portion of empirical Bayes analysis,
with Kass-Steffey adjustment.

Plant Gamma 
parameters,
", $

Posterior mean and
90% credible interval a

Industry

Callaway
Wash. Nuc. 2
Salem 1
Diablo Can. 1
Grand Gulf

Pt. Beach 2
Prairie Isl. 2
Oconee 2

  1.39, 1.211

12.13, 2.460
23.40, 5.348
11.03, 3.762
  6.08, 2.185
  8.15, 3.204

  1.33, 8.382
  1.33, 8.665
  1.33, 9.554

(0.118, 1.15, 3.07)

  (2.86, 4.93, 7.47)
  (3.00, 4.37, 5.96)
  (1.65, 2.93, 4.52)
  (1.22, 2.78, 4.86)
  (1.27, 2.54, 4.16)

(0.0151, 0.159, 0.431)
(0.0146, 0.154, 0.417)
(0.0132, 0.139, 0.378)

a.  Format is (lower bound, mean, upper bound).

An empirical Bayes estimator is sometimes called a
shrinkage estimator, or a shrinker, because the
method pulls all the MLEs in towards the industry
mean.  The intuitive justification for such shrinkage is
the recognition that extreme data are produced by a
combination of extreme parameters and luck.  Thus, the
plant with the highest observed frequency appears so
extreme because of a combination of large 8 and some
bad luck.  Likewise, the plant with the best perfor-
mance, Oconee 2, which ran for 366 days straight
without a single scram, can attribute its perfect perfor-
mance to a combination of low 8 and good luck.  The
empirical Bayes method tries to remove the effect of
luck when estimating the 8 values.
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Industry

Millstone 2

Crystal River 3

Indian Point 3

Indian Point 2
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Figure 8.4  Plant-specific MLEs and 90% confidence
intervals for p.

As always when performing a statistical analysis, one
should try to combine statistical calculations with
engineering understanding.  It is known that newly
licensed plants sometimes experience more initiating
events than they do after acquiring more experience.
This was mentioned in the discussion of Example 2.1,
and it is seen again here.

Of the 66 plants, 9 did not have their commercial
starts until 1984 or later.  These 9 young plants
are all among the 19 with the highest event fre-
quencies.  For example, consider the two plants
with the highest estimated frequencies, based on
the 1984 data.  Both of these plants had their
commercial starts in December 1984.

The hierarchical model is intended for plants that are
nominally identical.  The variability among the plants
is unexplained, and modeled as random.  An important
assumption is that each plant is assigned a 8 from the
same distribution, g.  As a result, each plant is as likely
as any other to have a large 8 or a small 8.  The
parameters 8i are called exchangeable if any 8i is as
likely as any other to correspond to a particular plant.
As discussed by Gelman et al. (1995, Section 5.2),
when we know nothing about the plants, exchangeabili-
ty is a reasonable assumption.  When we know the ages
of the plants, however, exchangeability is no longer
reasonable.  The most immature plants are expected to
have larger values of 8.

Thus, the analysis of Example 8.1 really should be
modified.  One way would be to separate the plants into
two groups, mature and immature, and perform an
empirical Bayes analysis on each group.  A more
sophisticated way would be to try to model the age of
the plant as a continuous explanatory variable.  Then
the otherwise random  8i would be multiplied by some
function of the age of plant i, a large factor for imma-
ture plants and a smaller factor for mature plants.  Such
models are beyond the scope of this handbook, how-
ever.

8.2.5.2 Example 8.2, AFW Segment Failures to
Start

This example has 68 plants, with 6 failures in 1993
demands.

Poloski et al. (1998) perform a chi-squared test to
see if p is the same at all plants.  This test is ex-
plained in Section 6.3.3.1.2.  The test statistic X2

equals 113.1.  Because there are 68 plants, the
degrees of freedom is 67.  The reported p-value is

0.0004, meaning that 113.1 is the 99.96th percentile
of the chi-squared distribution with 67 degrees of
freedom.  However, the data set has so few failures
that the chi-squared distribution is not a good
approximation for the distribution of X2.  The ex-
pected number of failures at a plant with 30 demands
(a typical number of demands) is 6×30/1993 = 0.09.
This is much less than the recommended minimum
of 0.5.  Therefore, the calculated p-value is quite
suspect.

Poloski et al. (1998) chose to model between-plant
differences with a hierarchical model, partly because
of the above calculated p-value, and partly on the
grounds that modeling possible differences between
plants is more conservative (reflecting more variabil-
ity) than simply pooling the data.

The empirical Bayes estimate of the population-
variability distribution, g, is a beta (0.137, 36.34)
distribution.  The mean of this distribution is
3.77E!3.  The 5th and 95th percentiles are 5.99E!12
and 2.12E!2.  Note, the first parameter of the beta
distribution is very small, well below 0.5.  As a result,
the 5th percentile is unrealistically small, implying
less than one failure in one hundred billion demands.
This unrealistic lower bound carries over to the
posterior distribution of all plants that have zero
failures.  Figures 8.4 and 8.5 are the analogues of
Figures 8.2 and 8.3.
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 Indian Point 3
   

Millstone 2

 Crystal River 3
  

 Indian Point 2
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(63 plants with
no failures)

1.E-04

Figure 8.5  Plant-specific posterior means and 90%
credible intervals for p.

The first figure shows plant-specific MLEs and 90%
confidence intervals, while the second shows the
results of the empirical Bayes analysis, posterior
means and 90% credible intervals.  Only the five
plants that had failures are individually identified in
the figures.

Some numerical details are given in Tables 8.4
through 8.6.

Table 8.4 Portion of frequentist analysis 
results for Example 8.2.

Plant x, d MLE and 90% conf. int. a

Industry

Millstone 2
Crystal River 3
Indian Point 3
Indian Point 2
Robinson 2

Prairie Island 1

Vogtle 1

6, 1993

1,   11
1,   16
2,   32
1,   24
1,   28

0,     3

0, 103

(1.31E!3, 3.01E!3, 5.93E!3)

(4.65E!3, 9.09E!2, 3.64E!1)
(3.20E!3, 6.25E!2, 2.64E!1)
(1.12E!2. 6.25E!2, 1.84E!1)
(2.13E!3, 4.17E!2, 1.83E!1)
(1.83E!3, 3.57E!2, 1.59E!1)

(0.0, 0.0, 3.32E!1)

(0.0, 0.0, 2.87E!2)

a  Format is (lower bound, MLE, upper bound).

Just as with Example 8.1, the empirical Bayes
method pulls the plant-specific MLEs toward the

industry mean.  This is seen in both the figures and
the tables.  Also, the Kass-Steffey adjustment in-
creases the width of the plant-specific intervals by
a noticeable amount, for example, by about 30%
for Indian Point 3.  This is best seen by comparing
Tables 8.5 and 8.6.  This comparison shows that
the estimates of the parameters have noticeable
uncertainty, even if the assumption of a beta distri-
bution is accepted.

Table 8.5 Portion of empirical Bayes analysis,
without Kass-Steffey adjustment.

Plant Beta pa-
rameters,
", $

Posterior mean and 90%
credible interval a

Industry

Indian Point 3
Millstone 2
Crystal River 3
Indian Point 2
Robinson 2

Prairie Isl. 1

Vogtle 1

0.137, 36.34

2.137, 68.34
1.137, 47.34
1.137, 52.34
1.137, 60.34
1.137, 64.34

0.137, 39.34

0.137, 139.3

(6.0E!11, 3.77E!3, 2.12E!2)

(6.14E!3, 3.12E!2, 7.15E!2)
(1.70E!3, 2.40E!2, 6.78E!2)
(1.53E!3, 2.17E!2, 6.14E!2)
(1.33E!3, 1.88E!2, 5.33E!2)
(1.24E!3, 1.76E!2, 5.01E!2)

(5.5E!12, 3.48E!3, 1.96E!2)

(1.6E!12, 9.86E!4, 5.52E!3)

a.  Format is (lower bound, mean, upper bound).

Table 8.6 Portion of empirical Bayes analysis,
with Kass-Steffey adjustment.

Plant Beta pa-
rameters,
", $

Posterior mean and 90%
credible interval a

Industry

Indian Point 3
Millstone 2
Crystal R. 3
Indian Point 2
Robinson 2

Prairie Isl. 1

Vogtle 1

0.137, 36.34

1.149, 35.65
0.596, 24.29
0.663, 29.94
0.754, 39.34
0.793, 44.14

0.133, 37.98

0.127, 128.9

(6.0E!11, 3.77E!3, 2.12E!2)

(2.27E!3, 3.12E!2, 8.77E!2)
(2.26E!4, 2.40E!2, 8.54E!2)
(3.16E!4, 2.17E!2, 7.44E!2)
(4.34E!4, 1.88E!2, 6.17E!2)
(4.78E!4, 1.76E!2, 5.69E!2)

(2.6E!12, 3.48E!3, 1.97E!2)

(2.8E!13, 9.86E!4, 5.59E!3)

a.  Format is (lower bound, mean, upper bound).

Poloski et al. (1998) carry out the above empirical
Bayes analysis, but they do not report the calcu-
lated lower bounds for plants that experience no
failures.  They recognize that those lower bounds
are unrealistically small, and that such calculated
values are an artifact of using a beta distribution. 
Therefore, they simply report that the lower bound
is <1E-8.  The next section gives a way to avoid
entirely the assumption of a beta distribution.
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Figure 8.6  Hierarchical Bayes model for Poisson data.

8.3 The Hierarchical Bayes
Method

8.3.1 General Approach

In the preceding discussion of parametric empirical
Bayes, the unknown hyperparameters of the popula-
tion-variability (or prior) distribution were estimated by
maximum likelihood.  The empirical Bayes estimate of
the population-variability distribution is the corre-
sponding distribution in which these maximum likeli-
hood estimates have been inserted.

The hierarchical Bayes method is entirely different. It
embodies a complete (or full) Bayesian approach to the
problem of estimating the unknown population-vari-
ability distribution based on the available data.  The
hierarchical Bayes approach expresses the initial
uncertainty (that is, uncertainty before the data are
considered) about the unknown hyperparameters using
yet another prior, a so-called second-order  or hyper-
prior distribution.  For example, in Example 8.1, the
population-variability distribution can be a gamma
distribution, with parameters (called hyperparameters
in this context)  " and $ .  The distribution g could also
be lognormal with parameters : and F2.  Any desired
distribution can be used, with any parameterization.
Figure 8.6 denotes the parameters of g generically as "
and $.  The uncertainty in the state-of-knowledge about
the values of " and $ is expressed by a suitably speci-
fied joint hyperprior distribution on " and $.  This
expands Figure 8.1 to be Figure 8.6.  We almost always
desire such hyperprior distributions to be diffuse
because we almost never have very precise (or informa-
tive) information at the hyperprior level of such a
model.

Figure 8.6 is drawn showing " and $ with separate
distributions.  In general, the hyperparameters together

have a joint distribution, which does not have to be the
product of independent distributions.

In the full Bayesian model all the unknown parameters,
including prior-distribution hyperparameters, are
assigned prior distributions that express the analyst’s
initial uncertainty about these parameters.  This is
known as a hierarchical Bayes model.  Berger (1985)
and Gelman et al. (1995) discuss the basic notions of
hierarchical Bayes modeling.  In Example 8.1, the
parameters of interest to be estimated at the overall
population-variability level of the analysis are " and $,
while the plant-specific parameters to be estimated are
the 66 8i values.  Each of these 68 parameters is
assigned an appropriate prior distribution in a hierarchi-
cal Bayes analysis.

The solution to the hierarchical Bayes method requires
conditioning on the data and obtaining the required
posterior distributions of all the parameters of interest.
This is done using Markov chain Monte Carlo (MCMC)
simulation (see Section 8.3.3).  The desired point and
interval estimates of the parameters are then directly
(and easily) obtained from these posterior distributions.
This process will be illustrated for Examples 8.1 and
8.2 in Sections 8.3.4 and 8.3.5, respectively.

It is well known (Berger 1985 and Gelman et al. 1995)
that parametric empirical Bayes can be viewed as an
approximation to a full hierarchical Bayes analysis.
However, there are several important advantages of
hierarchical Bayes over parametric empirical Bayes.

First, parametric empirical Bayes essentially requires
the use of a conjugate population-variability distribu-
tion in order to obtain the required unconditional
distribution of X in closed form.  Because hierarchical
Bayes analysis is implemented in practice using Monte
Carlo simulation, non-conjugate population-variability
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Figure 8.7  Directed graph for the hierarchical Bayes
analysis of Example 8.1.

distributions can be used as easily as conjugate distribu-
tions.  For the Poisson example, a lognormal(:, F2)
distribution on 8 is as easy as a gamma(", $) distribu-
tion.

Second, when using hierarchical Bayes, there is no need
to worry about double counting of the data.  The
hierarchical model and associated Bayesian analysis
ensures that this cannot occur.

Finally, as mentioned above, the hierarchical Bayes
method is conveniently and easily implemented in
practice by means of Markov chain Monte Carlo
simulation using existing software, which is presently
available for free download from the Web (see Section
8.3.3.3).

8.3.2 Directed Graphs

Those who do not need to know the formulas can skim
this section and then jump directly to Section 8.3.4.

The first conceptual step in a hierarchical Bayes analy-
sis should be to construct a directed graph represent-
ing the hierarchical Bayes model.  Briefly, such a graph
represents all quantities as nodes in a directed graph, in
which arrows between nodes represent directed influ-
ences.  A directed graph for Example 8.1 is shown in
Figure 8.7, where we have defined :i = 8iti.

Note that a solid arrow indicates a stochastic depend-
ency, while a dashed arrow indicates a logical function.
The hierarchical Bayes approach for the gamma-Pois-
son case proceeds as follows.  First specify hyperprior
distributions for the two hyperparameters outside the
“plant i” box in Figure 8.7.  Inference on the
hyperparameters ", $ and the scram rate vector 8 = (81,
82, …, 866) requires that we obtain Monte Carlo sam-
ples from the joint posterior g(", $, 8 | x), where the
data vector x is defined as x = (x1, x2, …, x66).  The
letter g is used here to denote both prior and posterior
densities.  Generate these samples, and then use sum-
mary statistics from these samples to obtain the desired
estimates, such as point and interval estimates of these
parameters.

In order to calculate samples from this joint posterior
we must successively sample from the full conditional
distributions.  That is, we must successively sample
from the conditional distribution of each stochastic
node given all the other stochastic nodes in the graph.
However, conditional independence is expeditiously
exploited in directed graphs in order to simplify these
full conditional distributions.  For example, given  $
and 8i, " in Figure 8.7 is conditionally independent
of xi.

8.3.3 Markov Chain Monte Carlo
(MCMC) Simulation

Readers who do not need the programming details can
skip directly to Section 8.3.4.

Markov chain Monte Carlo (MCMC)  sampling
techniques give the required samples from the joint
posterior distribution of all the unknown parameters.
The desired hierarchical Bayes point and interval
estimates can thus be directly computed from the
corresponding simulated sample observations without
the need for tedious analytical or numerical calcula-
tions.  MCMC is a Monte Carlo integration technique
that is implemented using Markov chains. MCMC
draws these samples by running a cleverly constructed
Markov chain for a long period of time.  Good intro-
ductions to MCMC are provided by Gilks et al. (1996)
and Gelman et al. (1995).

In the Poisson example, the required hierarchical Bayes
estimates can be obtained by means of Gibbs sampling,
a basic MCMC technique that is described next.  The
equations are sketched here first.  Then a publicly
available software package, BUGS, is described.  The
package implements the equations without requiring the
users to understand the details.
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8.3.3.1 Gibbs Sampling

Gibbs sampling  is a technique that can be used to
generate a random sample from the joint posterior
distribution indirectly, provided that we can directly
sample each of the full conditional distributions (which
are described below).

The Gibbs sampling method, sometimes also called
simply the Gibbs sampler, is briefly described here.
Suppose that we have a set of p parameters 21, 22, …,
2p whose joint posterior distribution g(21, 22, …, 2p | x)
is unknown but is of interest to be estimated.  This is
the usual case when using the hierarchical Bayes
method. In Example 8.1, the 2is consist of the two
hyperparameters plus the 66 8is, and the number of
parameters, p, is 68.

However, suppose that the full conditional distributions
g( 2i | 2j, x, j … i) i = 1, 2, …, p, are known in the sense
that sample values of 2i, conditional on values of 2j, j …
i, may be generated from these by some appropriate
method.  Under mild conditions, these conditional
distributions uniquely determine the required joint
posterior distribution g(21, 22, …, 2p | x); hence, they
determine all the unconditional marginal distributions
g( 2i | x), i = 1, 2, …, p, as well.

The Gibbs sampler generates samples from the required
joint distribution as follows:

(1) Select an arbitrary starting set of values .θ θ1
0 0,..., p

Set j = 0.

(2) Draw  from g( 21 | , …, , x), thenθ1
1j+ θ2

j θp
j

 from g(22 | , , …,  , x), and so onθ2
1j+ θ1

j θ3
j θp

j

up to  from g(2p | , …, , x) to com-θp
j+1 θ1

j θp
j
−1

plete one iteration of the sampler.
(3) Increment  j and repeat Step (2) until j+1 = n. After

n such iterations of Step (2), we have obtained the

sample ( , …, ). Under mild conditions, as nθ1
n θp

n

6 4 this p-tuple converges in distribution to the
unknown joint posterior distribution g(21, 22, …,
2p | x).

Typical implementation of the Gibbs sampling algo-
rithm generates an initial “large” number of iterations
(called the burn-in) until the samples have converged.
The burn-in samples are discarded, and the samples
generated thereafter are used as sample observations
from the joint posterior distribution g(21, 22, …, 2p | x).
Nonparametric density estimators, such as those given

in Section 6.7.3, can then be used to approximate the
posterior distribution using the post burn-in samples.
Examples 8.1 and 8.2 are analyzed in this way in
Sections 8.3.4 and 8.3.5.

In Example 8.1, 68 full conditional distributions are
required in order to use the Gibbs sampler:

(1)

g x g

ei
i

( | , , ) ( | , )

( )

α β λ α β λ

β
α λ
α α

α

≡

∝
⎡
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⎤

⎦
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⎛
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⎞
⎠⎟=

−∏Γ

66

1

66

(2)
g($ | ", 8, x) / g($ | ", 8 )

= gamma 66 0 0625 0 0625
1

66

α λ+ +
⎛
⎝
⎜

⎞
⎠
⎟

=
∑. , .i
i

(3)
g(8i | ", $, x) = gamma("+xi, $+ti),   i = 1, ..., 66 .

It is easy to sample directly from the gamma distribu-
tions.  The first distribution, however, the distribution
for ", is not of a familiar form, and in fact is not
known fully.  It is only known to be proportional to the
stated expression, with the normalizing constant
unknown.  The Metropolis-Hastings method is
described next, as a way to sample from a distribu-
tion such as the distribution for ".

8.3.3.2 Metropolis-Hastings Step

It is sometimes the case that one or more of the full
conditional distributions g( 2i | 2j, x, j … i) i = 1, 2, …,
p, required in Step (2) of the Gibbs sampler may not be
available in closed form.  This may happen as follows.
These full conditional distributions are usually obtained
using Bayes’ Theorem and, while the two terms (the
likelihood and the prior distribution) in the numerator
of Bayes’ Theorem are usually known, the integration
required to obtain the normalizing factor (the denomi-
nator) in Bayes’ Theorem cannot be performed in
closed form.  That is, the required full conditional
distribution is known only up to a multiplicative con-
stant, the normalizing factor.  The corresponding full
conditional distribution is thus unavailable in closed
form, and sample values from this distribution cannot
be directly obtained as required in Step (2) of the Gibbs
sampler. 

Denote the full conditional distribution, which is known
only up to a normalizing constant, as g(2i | 2j, x, j … i).
For convenience, we suppress the conditioning terms in
the notation below.  In this situation, sample observa-
tions may be obtained in Step (2) of the Gibbs sampler
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by using a so-called Metropolis-Hastings step (Has-
tings 1970) as follows:

(1) Initialize 2i
0 and set j = 0.

(2) Generate an observation 2i
* from a candidate

distribution q(2i
*| 2i

j), where q(y|x) is a probability
density in y with parameter (for example mean) x.

(3) Generate a uniform(0, 1) observation u .
(4) Let

   θ θ α θ θ
θi

j+ i i
j

i

i
j

u1 =
≤⎧

⎨
⎩

* *, ( , )

,

  if 

  otherwise        

where

 .α( , )
( ) ( | )

( ) ( | )
x y

g y q x y

g x q y x
=

(5) Increment j and go to (2).

Because " uses a ratio, g(y)/g(x), it can be calculated
even though the normalizing constant for g is unknown.
The candidate distribution in Step (2) can be almost any
distribution (Gilks et al. 1996), although a symmetric
distribution such as a normal distribution results in a
simplification of the algorithm, and is called simply a
Metropolis step (as opposed to a Metropolis-Hastings
step).  A common choice for  q(y|x) is a normal distri-
bution with mean x and a variance that allows the
random deviates to be a representative sample from the
entire complete conditional distribution.  A preliminary
rule of thumb suggested by Gelman et al. (1995, Sec.
11.5) is that the variance be such that the new value,
2i*, is picked in Step (4) about 30% of the time, and the
old value, 2i

j, is picked about 70% of the time.  The
new value should be picked more often in problems
with few parameters and less often in problems with
many parameters.

Actually, BUGS favors a method called adaptive
rejection sampling (Gilks and Wild 1992) instead of
the Metropolis-Hastings algorithm.  This method uses
more storage space but fewer iterations.  It requires that
the conditional distributions in the Gibbs sampler be
log-concave (George et al. 1993).  This requirement is
satisfied for the commonly used prior distributions.  If
the user happens to select a prior that leads to a prob-
lem, BUGS will give a diagnostic message.

8.3.3.3 BUGS (Bayesian Inference Using Gibbs
Sampling)

Fortunately, for a wide range of common problems,
there is little need to actually program the Gibbs

sampler in practice. Gibbs sampling has been conve-
niently implemented through the BUGS software
project (BUGS 1995, Spiegelhalter et al. 1995, and
Gilks et al. 1994).  It is currently available for free
download at WWW URL 

http://www.mrc-bsu.cam.ac.uk/bugs/ .

The classic BUGS program uses text-based model
description and a command-line interface, and versions
are available for major computing platforms.

A Windows version, WinBUGS, has an optional
graphical user interface (called DoodleBUGS) as well
as on-line monitoring and convergence diagnostics.
BUGS is reasonably easy to use and, along with a user
manual, includes two volumes of examples.  Section
8.3.4 illustrates how WinBUGS was used in Example
8.1 to obtain the hierarchical Bayes estimates of the 66
plant-specific scram rates and of the corresponding
population-variability distribution.  Section 8.3.5 uses
WinBUGS in Example 8.2, to obtain the hierarchical
Bayes estimates of p at each of the 68 plants and of the
corresponding population-variability distribution.

8.3.4 Application to Example 8.1, 
Initiating Events

8.3.4.1 Development of Hyperprior Distributions

It will be necessary at the start to develop hyperprior
distributions.  Therefore, this topic is discussed here in
general terms.  One must choose hyperpriors that are
diffuse enough to contain the true values of the
hyperparameters.  That means that the analyst must
have some vague idea of the true values of the hyper-
parameters.  In principle, this should come from experi-
ence with other, similar data sets.  Often, however, the
current data set is used to provide guidance on the
plausible hyperparameter values.  The diffuseness of the
hyperpriors can be assessed by using the rough rule of
thumb that a quantity can plausibly vary from its mean
by up to two standard deviations.

In the examples below, the plausible values will be
obtained from the previous empirical Bayes analyses.
However, it is possible to develop hyperprior distribu-
tions without such a sophisticated analysis, just by
examining the data carefully.  For example, one can
easily get an estimate of the mean of 8, and one can
also find an upper bound that 8 rarely exceeds.  Such
considerations can provide rough guidance on plausible
bounds for the hyperparameters " and $.  Then one
constructs hyperprior distributions that achieve these
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model
{
   for (i in 1:M) {
      lambda[i] ~ dgamma(alpha,beta)
      mu[i] <- lambda[i]*t[i]
      x[i] ~ dpois(mu[i])
   }
   alpha ~ dexp(1.0)
   beta ~ dgamma(0.0625, 0.0625)
}

Figure 8.8  WinBUGS model specification for
Example 8.1.

bounds without going far into the tails of the distribu-
tions.  The process is not always easy, but some analy-
sis of this type is necessary.

It might seem tempting to just use distributions with
enormous standard deviations, say mean 1 and standard
deviation 1,000.  In principle this is possible, but in
practice it may challenge the numerical accuracy of the
software.  Therefore, it is recommended that the data be
examined and that hyperpriors be constructed that are
diffuse enough to include anything consistent with the
data, but that are not unrealistically diffuse.

8.3.4.2 Example Analysis

Let us now illustrate the hierarchical Bayes method
in Example 8.1.  We use the Gibbs sampler in BUGS
to calculate all the required population and plant-
specific scram rate estimates.  

To begin, we assume that the population-variability
distribution is gamma(", $) just as in Section 8.2.
First the hyperprior distributions must be constructed
for " and $, based on the considerations in Section
8.3.4.1.  The empirical Bayes analysis of Section
8.2.5.1 gave " = 1.4 and $ = 1.2.  Therefore, we
choose both hyperpriors to have mean 1, agreeing
(to one significant digit) with the empirical Bayes
results.  The hyperparameter " is given an exponen-
tial hyperprior distribution with mean and variance of
1, while the hyperparameter $ is given an independ-
ent gamma(0.0625, 0.0625) hyperprior distribution.
Thus, $ is assumed to have a hyperprior mean and
standard deviation of 1 and 4, respectively.  The
hyperpriors are diffuse (large variances), and have
plausible means, so they will probably not bias the
final answers much.

Figure 8.8 contains the WinBUGS model used here
for this Poisson example. The initial values consid-
ered are: alpha = 1, beta = 1, and lambda[i] = 1, i =
1, …, 66.

After 1,000 burn-in iterations (to remove the effect of
the initial starting values and to achieve convergence
of the Markov chain), 10,000 additional simulated
posterior sample values of ", $, and 8 = (81, 82, …,
866) were recorded.  These 10,000 sample values
were then used to calculate the required posterior
point and credible interval estimates of ", $, and
each 8i.  For example, the hierarchical Bayes esti-
mated posterior mean of the Callaway scram rate is
calculated to be 4.97 per 1,000 critical hours.  The
corresponding 90% credible interval on 81 is [2.87,
7.51].

In addition, the marginal posterior mean and stan-
dard deviation of " are calculated to be 1.38 and

0.30, respectively, whereas those for $ are computed
to be 1.21 and 0.32.  A hierarchical Bayes 90%
credible interval for " is [0.94, 1.93], while the corre-
sponding interval for $ is [0.76, 1.78]. The marginal
posterior correlation between " and $ is also easily
calculated from the 10,000 pairs of corresponding
posterior (", $) values to be 0.89.  From Table 8.3
we see that the empirical Bayes point estimates of "
and $ are 1.39 and 1.21, respectively, which are in
near perfect agreement with the hierarchical Bayes
estimates.

Figure 8.9 illustrates the hierarchical Bayes results.
For each plant, the posterior mean and 90% credible
interval are shown.  The mean and 90% credible
interval for the population-variability distribution are
also shown, and a vertical dashed line is drawn
through the mean.  Actually, this population-variabil-
ity distribution is the gamma distribution evaluated
when " and $ are set equal to their posterior means.
It does not reflect the uncertainty in these two hyper-
parameters.  Figure 8.9 agrees very closely with
Figure 8.3.

Table 8.7 contains the same portion of the numerical
hierarchical Bayes analysis results for Example 8.1
as are displayed in Table 8.3.

The point and interval estimates in Table 8.7 are all
in good agreement with the empirical Bayes esti-
mates in Table 8.3.

8.3.5 Application to Example 8.2, AFW 
Segment Failures to Start

Recall that this example has 68 plants with sparse failure
data consisting of only 6 failures in 1,993 demands.
Because the data are so sparse, the form of the prior, the
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Industry

Callaway

Wash. Nuclear 2

Salem 1

Diablo Canyon 1

Grand Gulf

Susquehanna 2

Salem 2

McGuire 2

Hatch 2

LaSalle 2

46 other plants

Quad Cities 2

Vermont Yankee

Fort Calhoun

Crystal River 3

Ginna

Point Beach 1

Millstone 1

Point Beach 2

Prairie Island 2

Oconee 2

Events/1000-Critical-Hours GC00 0419 5

1.E-03 1.E-02 1.E-01 1.E-00 1.E+01 1.E+02

Figure 8.9  Plant-specific posterior means and 90%
credible intervals for 8, from hierarchical Bayes
analysis.

model 
{ 
  for (i in 1:M) { 
      x[i] ~ dbin(p[i],n[i]) 
      p[i] ~ dbeta(alpha, beta) 
  } 
  alpha ~ dexp(1.0) 
  beta  ~ dgamma(1.0,0.035) 
}

Figure 8.10  WinBUGS model specification for a
beta prior in Example 8.2.

population-variability distribution, can strongly influence
the answers.  Therefore, the example is analyzed using two
population-variability distributions, first a beta distribu-
tion, as in Section 8.2, and then a logistic-normal distribu-
tion.  In each case, diffuse hyperpriors with plausible
means are used.  Therefore, the exact choices made for the
hyperpriors have little influence on the answer.

Table 8.7 Portion of hierarchical Bayes anal-
ysis results for Example 8.1.

Plant Posterior mean and 90%
credible interval a

Industry

Callaway
Wash. Nuc. 2
Salem 1
Diablo Can. 1 
Grand Gulf

Pt. Beach 2
Prairie Isl. 2
Oconee 2

(0.116, 1.14, 3.06)

(2.87, 4.97, 7.51)
(3.01, 4.39, 5.99)
(1.65, 2.94, 4.57)
(1.24, 2.83, 4.99)
(1.27, 2.57, 4.21)

(0.013, 0.156, 0.429)
(0.012, 0.152, 0.410)
(0.011, 0.137, 0.374)

a.  Format is (lower bound, mean, upper bound).
The least significant digit may be inaccurate by 2
or more, because of Monte Carlo sampling error.

8.3.5.1 Analysis with Beta Prior

We assume that the population-variability distribution
is a beta(", $) distribution.  In this case, the empirical
Bayes analysis found " = 0.1 and $ = 36.  We will
construct diffuse hyperpriors that contain these
values.

The hyper-parameter " is assigned an exponential
(1) hyperprior distribution with a hyperprior mean and
standard deviation of 1, while the hyperparameter $
is assigned an independent gamma(1.0, 0.035)
hyperprior distribution. Thus, we assume that $ has
a hyperprior mean and standard deviation both equal
to approximately 30.  The forms of these hyperprior
distributions ensure that the joint posterior distribu-
tion will be log-concave, and the diffuseness of the
hyperpriors ensures that they will not influence the
final answers greatly.

The chosen hyperpriors include the desired values of
0.1 and 36, and much more.  In particular, the expo-
nential distribution for " allows any value below the
mean of 1, because the exponential density de-
creases monotonically.  Likewise, the gamma density
of $ also is monotonically decreasing, and so allows
any value below the mean.  As for values larger than
the mean, we apply the rule of thumb that says that
most random variables can easily deviate from the
mean by up to two standard deviations.  This says
that " could be as large as 3 and $ as large as about
90.  Because of the knowledge gained from the
empirical Bayes analysis, we believe that the
hyperpriors are diffuse enough.  If the prior belief
about the parameters were more rough, based on a
cruder analysis of the data, we would want to com-
pensate by choosing more diffuse hyperpriors.  See
Section 8.3.4.1 for more details.

Fig. 8.10 contains the WinBUGS model used here
for this binomial example. The initial values were:
alpha = 1, beta = 1, and p[i] = 0.01, i = 1, …, 68.
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1.E-03 1.E-02 1.E-01 1.E+00
p GC00 0419 4

1.E-04

 Industry

 Indian Point 3
   

Millstone 2

 Crystal River 3
  

 Indian Point 2
   

Robinson 2

(63 plants with
no failures)

Figure 8.11  Plant-specific posterior means and 90%
credible intervals for p, from hierarchical Bayes
analysis with beta population-variability distribution.

After 10,000 burn-in iterations (to remove the effect
of the initial starting values and to achieve conver-
gence of the Markov chain), 90,000 additional
simulated posterior sample values of ", $, and p =
(p1, p2, …, p68) were recorded.  These 90,000 sample
values were then used to calculate the required
posterior point and credible interval estimates of ",
$, and each pi.

In addition, the marginal posterior mean and stan-
dard deviation of " are calculated to be 0.188 and
0.136, respectively, whereas those for  $  are com-
puted to be 46.4 and 32.4.  A hierarchical Bayes
90% credible interval for "  is [0.046, 0.442], while
the corresponding interval for $  is [9.95, 109.5].
Note the large uncertainties associated with the
hierarchical Bayes estimates of " and $ because of
the sparseness of the data.  Table 8.6 shows that the
empirical Bayes point estimates of " and $ are 0.137
and 36.34, respectively, which are well within the
90% credible intervals of the corresponding hierar-
chical Bayes estimates.

Figure 8.11 illustrates the hierarchical Bayes results.
For each plant, the posterior mean and 90% credible
interval are shown. The mean and 90% credible
interval for the population-variability distribution are
also shown, and a vertical dashed line is drawn
through the mean.

Table 8.8 contains the same portion of the numerical
hierarchical Bayes analysis results for Example 8.2
as given in Table 8.6.  The results are presented to
only two significant digits, because the Monte Carlo
errors reported by BUGS show that the third signifi-
cant digit is not meaningful.

Table 8.8 Portion of hierarchical Bayes 
analysis results using beta prior for
Example 8.2.

Plant Posterior mean and 90% 
credible interval a

Industry

Indian Point 3
Millstone 2
Crystal R. 3
Indian Point 2
Robinson 2

Prairie Isl. 1

Vogtle 1

(1.6E!9, 4.0E!3, 2.1E!2)

(5.5E!2, 3.2E!2, 7.9E!2)
(1.6E!2, 2.6E!2, 8.3E!2)
(1.5E!2, 2.3E!2, 7.1E!2)
(1.3E!2, 1.9E!2, 5.9E!2)
(1.2E!2, 1.8E!2, 5.4E!2)

(1.5E!15, 4.1E!3, 2.1E!2)

(2.5E!16, 1.2E!3, 6.4E!3)

a.  Format is (lower bound, mean, upper bound).

The point and interval estimates in Table 8.8 are all
in reasonably close agreement with the empirical
Bayes estimates in Table 8.6.

8.3.5.2 Analysis with Logistic-Normal Prior

One of the primary advantages in using the hierarchical
Bayes method is the ability to consider non-conjugate
population-variability (or prior) distributions.  We now
illustrate this for Example 8.2.

The previous analysis considered a conjugate beta prior in
this example.  Table 8.8 shows that, for x = 0, the use of
a beta prior produces lower 5% credible limits on the
order of 10-15 or 10-16, which are unrealistically small.
This result is a consequence of the fitted L-shaped beta
prior distribution, with high density close to p = 0.

We can avoid such unrealistic results by using a non-
conjugate logistic-normal prior distribution (see Section
6.3.2.5.2 or A.7.9) in the hierarchical Bayes approach.
Recall that, while such a prior is extremely difficult to
consider in an empirical Bayes approach, it is extremely
easy to do in hierarchical Bayes.

Figure 8.12 contains the WinBUGS model specifica-
tion for using a logistic-normal prior in Example 8.2.
Observe that this is no more difficult than using the
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model
{
    for (i in 1:M) {
        x[i] ~ dbin(p[i],n[i])
        y[i] ~ dnorm(mu,tau)
        p[i] <- exp(y[i])/(1 + exp(y[i]))
    }
    mu ~ dnorm(-5,0.0001)
    tau ~ dgamma(1,7)
}

Figure 8.12  WinBUGS model specification for a
logistic-normal prior in Example 8.2.
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Figure 8.13  Fitted population-variability distributions
in Example 8.2.
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 Industry

 Indian Point 3
   

Millstone 2

 Crystal River 3
  

 Indian Point 2
   

Robinson 2

(63 plants with
no failures)

Figure 8.14  Plant-specific posterior means and 90%
credible intervals for p, from hierarchical Bayes
analysis with logistic-normal population-variability
distribution.

hierarchical Bayes model based on a conjugate beta
prior shown in Figure 8.10.  Note that BUGS parame-
terizes the normal distribution in terms of J = 1/F2.  A
commonly used prior distribution for J is gamma, and
that choice is used here.  Thus, assigning : a prior
precision of 0.0001 is equivalent to assigning it a
prior variance of 10,000, or a prior standard deviation
of 100.

Again using 10,000 burn-in iterations and 90,000
replications of the Gibbs sampler for the model in
Figure 8.12, WinBUGS likewise calculated posterior
means and 90% credibility intervals for :, F, and
each pi.

The marginal posterior mean and standard deviation
of : are calculated to be –5.097 and 0.09517, re-
spectively, whereas those for F are computed to be
0.640 and 0.238. A hierarchical Bayes 90% credible
interval for : is [-5.253, -4.939], while the corre-
sponding interval for F is [0.322, 1.08].

Figure 8.13 shows the two estimated population-
variability distributions, when the form is assumed to
be beta (the conjugate distribution) or logistic-normal.
The mean of the beta prior is 0.004 and the mean of
the logistic-normal prior is 0.007, nearly twice as
large. Note that, unlike the beta prior, the logistic-
normal prior avoids the high probability density close
to p = 0.

Figure 8.14 illustrates the hierarchical Bayes results
using the logistic-normal prior. As in Figure 8.11, the
posterior mean and 90% credible interval are shown
for each plant. The mean and 90% credible interval
for the population-variability distribution are also
shown, and a vertical dashed line is drawn through
the mean. This plot may be directly compared with
Figure 8.11.

Table 8.9 contains the same portion of the numerical
hierarchical Bayes analysis results for the logistic-
normal as given in Table 8.8 for the beta prior.

Note that the posterior means and 90% credible
intervals in Table 8.9 are all larger than those in
Table 8.8.  As stated above, this is a direct conse-
quence of using the logistic-normal prior in Figure
8.13.  Observe also that the lower 90% credibility
limits for plants with no failures, such as Prairie
Island 1 and Vogtle 1, are now much more realistic
than the corresponding limits in Table 8.8.
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Table 8.9 Portion of hierarchical Bayes analy-
sis results using logistic-normal
prior for Example 8.2.

Plant Posterior mean and 90% credi-
ble interval a

Industry

Indian Point 3
Millstone 2
Crystal R. 3
Indian Point 2
Robinson 2

Prairie Isl. 1

Vogtle 1

(2.1E!3, 7.4E!3, 1.7E!2)

(6.2E!3, 3.4E!2, 8.7E!2)
(3.0E!3, 3.1E!2, 9.7E!2)
(2.8E!3, 2.6E!2, 8.0E!2)
(2.5E!3, 2.1E!2, 6.2E!2)
(2.4E!3, 1.9E!2, 5.7E!2)

(6.6E!4, 1.2E!2, 4.4E!2)

(4.3E!4, 4.E!3, 1.3E!2)

a.  Format is (lower bound, mean, upper bound).

8.4 Discussion

This chapter concludes with several important observa-
tions.

8.4.1 Hierarchical Bayes Is Still Bayes

The hierarchical Bayes model is a special case of the
familiar Bayesian model.  It is not some new kind of
construction.  To see this, consider Levels 0 and 1
together in Figure 8.6.  The prior parameter is a vector
2, consisting of the hyperparameters and the 8is.  Thus,
the prior 2 is a vector with dimension 2+ m.  The prior
distribution on 2 is specified:  the joint distribution of
the hyperparameters " and $ is given by the hyperprior
in Level 0, and the conditional distributions of the 8is
are independent, and specified by g, conditional on "
and $.  Thus, Levels 0 and 1 together specify the prior
parameter vector and its prior distribution.  The poste-
rior distribution is therefore given by Bayes’ Theorem:

gpost(2 | data) % Pr(data | 2) × gprior(2) .

This differs from the applications of Bayes’ Theorem
elsewhere in this handbook in only two ways:  the
parameter is a high-dimensional vector, and the prior
distribution has a lot of structure, as shown in Fig-
ure 8.6.

A practical consequence of the high dimension of 2 is
that the tools of Chapter 6, numerical integration and
simple random sampling methods, do not work well.
More recently developed methods, versions of Markov

chain Monte Carlo sampling, must be used.  Conceptu-
ally, however, hierarchical Bayes modeling fits per-
fectly within the framework of Bayes’ Theorem.  In
particular, everything is legal, with no double counting
of data.

8.4.2 The “Two-Stage” Bayesian
Method

Kaplan (1983) introduced a “two-stage” Bayesian
method, which has sometimes been used in PRA work.
It is described here in terms of Figure 8.6.  The method
singles out the plant of special interest, say Plant 1.  It
then estimates the hyperparameters, " and $, in a
Bayesian way, using the data from all the plants except
Plant 1.  It then uses the estimated g(8 | ", $) as a prior,
combining it with the data from Plant 1 to estimate 81

in the usual Bayesian way.

The originally intended reason for not using Plant 1 in
the first stage was to avoid double counting.  As men-
tioned in Section 8.4.1, the hierarchical Bayes method
is based directly on Bayes’ Theorem, and therefore
does not involve double counting.  Therefore, the two-
stage Bayesian method should no longer be used, but
should be replaced by the conceptually cleaner hierar-
chical Bayes method.  Now that numerical algorithms
have been developed to sample from the posterior
distributions, this is completely feasible.

8.4.3 Lower Bounds on Parameters

Example 8.2 illustrated that different population-
variability distributions (prior distributions) can lead to
radically different lower percentiles of the parameters’
posterior distributions.  This occurred in that example
for those plants that had experienced no failures.  A
beta prior led to 5th percentiles for p on the order of
1E!15, whereas a logistic-normal prior led to 5th
percentiles on the order of 5E!4.  No one believes the
first answers, but many people could believe the second
answers.  Does that mean that the answers from the
logistic-normal prior are “right”?

In fact, the lower bounds are an artifact of the model, in
both cases.  The plants that experienced no failures
reveal only that p is “small” at those plants.  They do
not give information about how small p might be.  If
many plants have no failures, as in Example 8.2, then
we have very little information about the lower end of
the population-variability distribution.  In contrast to
this, the plants that experienced one or more failures
convey much more information, revealing both how
large and how small p could plausibly be at those
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plants.  Therefore, the 95th percentile of p at any plant
is somewhat dependent on the assumed form of the
population-variability distribution (beta, logistic-
normal, or whatever).  But when many plants have no
observed failures, the 5th percentile of p at any of those
plants is extremely dependent on this assumed form.

And why was a particular form assumed for the popula-
tion-variability distribution?  For convenience only!
Thus, even if the answers from a logistic-normal prior
look credible, we do not “know” that they are correct.
We may choose to discard the results from using a beta
prior, because we do not want to publish 5th percentiles
that could be ridiculed.  We might also choose to
publish the results from using a logistic-normal prior,
knowing that the 5th percentiles appear credible.  But it
is a delusion to think that we “know” lower bounds on
p at the plants with no observed failures.  The calcu-
lated lower bounds remain an artifact of the assumed
model.

Fortunately, lower bounds are not a concern for risk.
Means and upper bounds are the important quantities,
and they can be estimated with much less dependence
on the model.

8.4.4 Empirical Bayes as an 
Approximation to Hierarchical
Bayes

As remarked elsewhere, Figures 8.3 and 8.9 are very
similar to each other, and Figures 8.5 and 8.11 are
similar to each other.  That is, in both Examples 8.1 and
8.2, the empirical Bayes results are numerically close to
the hierarchical Bayes results, when (a) the empirical
Bayes method includes the Kass-Steffey adjustment,
and (b) both methods use the conjugate population-
variability distribution, a gamma distribution for
Poisson data and a beta distribution for binomial data.
This agreement between the methods is more than
coincidence.  Kass and Steffey (1989) developed their
method specifically with this intent:  to make the
empirical Bayes approach give a first-order approxima-
tion to the hierarchical Bayes approach with a diffuse
hyperprior.  The method does this well in the two
examples.  Of course, when the hierarchical Bayes
method does not use a conjugate population-variability
distribution, as in Section 8.3.5.2, there is no corre-
sponding empirical Bayes method.
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Figure A.1  Venn diagram, showing ten outcomes
and three events.

A.  BASICS OF PROBABILITY

A.1 Events

Any repeatable process for which the result is uncertain
can be considered an experiment, such as counting
failures over time or measuring time to failure of a
specific item of interest.  The result of one execution of
the experiment is referred to as an outcome.  Due to
uncertainty associated with the process, repetitions or
trials of a defined experiment would not be expected to
produce the same outcomes.  The set of all possible
outcomes of an experiment is defined as the sample
space.

Sample spaces can contain discrete points (such as pass,
fail) or points in a continuum (such as measurement of
time to failure).  An event E is a specified set of possi-
ble outcomes in a sample space S (denoted E d S, where
d denotes subset).

Most events of interest in practical situations are
compound events, formed by some composition of two
or more events.  Composition of events can occur
through the union, intersection, or complement of
events, or through some combination of these.

For two events, E1 and E2, in a sample space S, the
union of E1 and E2 is defined to be the event containing
all sample points in E1 or E2 or both, and is denoted by
the symbol (E1 c E2).  Thus, a union is simply the event
that either E1 or E2 occurs or both E1 and E2 occur.

For two events, E1 and E2, in a sample space S, the
intersection of E1 and E2 is defined to be the event
containing all sample points that are in both E1 and E2,
denoted by the symbol (E1 1 E2).  The intersection is
the event that both E1 and E2 occur.

Figure A.1 shows a symbolic picture, called a Venn
diagram, of some outcomes and events.  In this exam-
ple, the event E1 contains three outcomes, event E2

contains five outcomes, the union contains seven
outcomes, and the intersection contains one outcome.

The complement of an event E is the collection of all
sample points in S and not in E.  The complement of E
is denoted by the symbol &E  and is the outcomes in S
that are not in E occur.  In Figure A.1, the complement
of E1 is an event containing seven outcomes.

It is sometimes useful to speak of the empty or null set,
a set containing no outcomes.  In Figure A.1, the event
E3 is empty.  It cannot occur.

Two events, E1 and E2, are said to be mutually exclu-
sive if the event (E1 1 E2) contains no outcomes in the
sample space S.  That is, the intersection of the two
events is the null set.  Mutually exclusive events are
also referred to as disjoint events.  Three or more
events are called mutually exclusive, or disjoint, if each
pair of events is mutually exclusive.  In other words, no
two events can happen together.

A.2 Basic Probability Concepts

Each of the outcomes in a sample space has a probabil-
ity associated with it.  Probabilities of outcomes are
seldom known; they are usually estimated from relative
frequencies with which the outcomes occur when the
experiment is repeated many times.  Once determined,
the probabilities must satisfy two requirements:

1. The probability of each outcome must be a number
$ 0 and # 1.

2. The probabilities of all outcomes in a given sample
space must sum to 1.

Associated with any event E of a sample space S is the
probability of the event, Pr(E).  Since an event repre-
sents a particular set of outcomes of an experiment, the
values of Pr(E) are built from the probabilities of the
outcomes in E.

Probabilities are associated with each outcome in the
sample space through a probability model.  Probability
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models are often developed on the basis of information
derived from outcomes obtained from an experiment.
Probability models are also formulated in the context of
mathematical functions. 
  
The values of Pr(E) estimated from the experimental
outcomes are often defined as being representative of
the long-run relative frequency for event E.  That is, the
relative frequency of an outcome will tend toward some
number between 0 and 1 (inclusive) as the number of
repetitions of the experiment increases.  Thus, the
probability of the outcome is the number about which
the long-term relative frequency tends to stabilize.

This interpretation forms the basis of the relative
frequency definition of probability, also referred to as
the frequentist view of probability.  In the frequentist
view, a mathematical theory of probability is developed
by deriving theorems based on the axioms of probabil-
ity given in the next subsection.  The probability of an
event is considered to be a fixed quantity, either known
or unknown, that is a property of the physical object
involved and that can be estimated from data.  A
theorem derived from the three axioms describes the
frequentist view:

If an experiment is repeated a large number of times, n,
the observed relative frequency of occurrence, nE /n, of
the event E (where nE  = the number of repetitions when
event E occurred) will tend to stabilize at a constant,
Pr(E), referred to as the probability of E.

Another interpretation of probability leads to the so-
called classical definition of probability, which can be
stated as follows:

If an experiment can result in n equally likely and
mutually exclusive outcomes and if nE of these out-
comes contain attribute E, then the probability of E is
the ratio nE / n.

For example, if each of the outcomes in Figure A.1 had
equal probability, 0.1, then Pr( E1) = 0.3, Pr(E2) = 0.5,
Pr(E11E2) = 0.1, Pr(E1cE2) = 0.7, and Pr(E3) = 0.

The classical definition is limited, because it assumes
equally likely outcomes.  However, it helps motivate
the frequentist axioms mentioned above.  These axioms
provide a mathematical framework for  probability, an
overview of which is addressed in Section A.3.  Some
texts, including parts of this handbook, use the terms
classical and frequentist interchangeably.

Another interpretation of probability is as a subjective
probability.  Probabilities obtained from the opinions

of people are examples of subjective probabilities.  In
this concept, probability can be thought of as a rational
measure of belief.  Any past information about the
problem being considered can be used to help assign
the various probabilities.  In particular, information
about the relative frequency of occurrence of an event
could influence the assignment of probabilities.

The notion of subjective probability is the basis for
Bayesian inference.  In contrast to the relative fre-
quency definition of probability that is based on proper-
ties of events, subjective probability can be extended to
situations that cannot be repeated under identical
conditions.  However, the assignment of subjective
probabilities can be done according to certain principles
so that the frequency definition requirements of proba-
bility are satisfied.  All the mathematical axioms and
theorems developed for frequentist probability apply to
subjective probability, but their interpretation is differ-
ent.

Martz and Waller (1991) present subjective probability
as dealing not only with events but with propositions.
A proposition is considered to be a collection of events
that cannot be conceived as a series of repetitions, for
example, a nuclear power plant meltdown.  The degree
of belief in proposition A, Pr(A), represents how
strongly A is believed to be true.  Thus, subjective
probability refers to the degree of belief in a proposi-
tion.  At the extremes, if A is believed to be true, Pr(A)
= 1; if A is believed to be false, Pr(A) = 0.  Points
between 0 and 1 represent intermediate beliefs between
false and true.

A.3 Basic Rules and Principles of
Probability

The relative frequency, classical, and subjective
probability definitions of probability satisfy the follow-
ing axiomatic requirements of probability:

If Pr(E) is defined for a type of subset of the sample
space S, and if

1. Pr(E) $ 0, for every event E,
2. Pr(E1 c E2 c @ @ @) = Pr(E1) + Pr(E2) + @ @ @ , where

the events E1, E2, . . . , are such that no two have a
point in common, and

3. Pr(S) = 1,

then Pr(E) is called a probability function.

A probability function specifies how the probability is
distributed over various subsets E of a sample space S.
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From this definition, several rules of probability follow
that provide additional properties of a probability
function.

The probability of an impossible event (the empty or
null set) is zero, written as:

Pr(i) = 0,

where i is the null set.  The probability of the comple-
ment of E is given by:

Pr(&E ) = 1 ! Pr(E).

In general, the probability of the union of any two
events is given by:

Pr(E1 c E2) = Pr(E1) + Pr(E2) ! Pr(E1 1 E2).

If E1 and E2 are mutually exclusive, then Pr(E1 1 E2) =
Pr(i) = 0, and

Pr(E1 c E2) = Pr(E1) + Pr(E2),

which is a special case of the second axiom of probabil-
ity stated above and is sometimes referred to as the
addition rule for probabilities.

For three events,

Pr(E1 c E2 c E3) = Pr(E1) + Pr(E2) + Pr(E3)
! Pr(E1 1 E2) ! Pr(E1 1 E3)
! Pr(E2 1 E3) + Pr(E1 1 E2 1 E3 ).

This rule is also referred to as the inclusion-exclusion
principle and can be generalized to n events.  It is
widely used in PRA to calculate the probability of an
“or” gate (a union of events) in a fault tree (NRC 1994).

The inclusion-exclusion principle also provides useful
upper and lower bounds on the probability of the union
of n events that are not mutually exclusive.  One such
upper bound, referred to as the rare event approxima-
tion, is:

Pr(E1 c E2 c ... c En) # Pr(E1) + Pr(E2) + ... + Pr(En).

The rare event approximation should only be used when
the probabilities of the n events are all very small (NRC
1994).  If the n events are mutually exclusive, the error
is zero.  A bound on the error is

 max [Pr(Ei)], 
n

2

⎛
⎝
⎜

⎞
⎠
⎟

which is valid regardless of the independence of events
(NRC 1994, though printed with a misprint there).  The
error in the rare-event approximation arises from the
remaining terms in the full expansion of the left-hand
side of the inequality.  This approximation is frequently
used in accident sequence quantification.

Many experimental situations arise in which outcomes
are classified by two or more events occurring simulta-
neously.  The simultaneous occurrence of two or more
events (the intersection of events) is called a joint event,
and its probability is called a joint probability.  Thus,
the joint probability of both events E1 and E2 occurring
simultaneously is denoted by Pr(E1 1 E2).

The probability associated with one event, irrespective
of the outcomes for the other events, can be obtained by
summing all the joint probabilities associated with all
the outcomes for the other events, and is referred to as
a marginal probability.  A marginal probability is
therefore the unconditional probability of an event,
unconditioned on the occurrence of any other event.

Two events E1 and E2 are often related in such a way
that the probability of occurrence of one depends on
whether the other has or has not occurred.  The condi-
tional probability of one event, given that the other has
occurred, is equal to the joint probability of the two
events divided by the marginal probability of the given
event.  Thus, the conditional probability of event E2,
given event E1 has occurred, denoted Pr(E2*E1), is
defined as:

Pr(E2*E1) = Pr(E1 1 E2) / Pr(E1), (A.1)

for Pr(E1) > 0.  If Pr(E1) = 0, Pr(E2*E1) is undefined.

Rearranging this equation yields:

Pr(E1 1 E2) = Pr(E1) Pr(E2*E1)
(A.2)

= Pr(E2) Pr(E1*E2).

Calculation of joint probability requires the concept of
statistical independence.  An event E2 is statistically
independent of E1 if the probability of E2 does not
change whenever E1 occurs or does not occur.  Thus, E2

is independent of E1 if

Pr(E2*E1) = Pr(E2).

It follows from Equation A.1 that E2 is independent of
E1 if their joint probability is equal to the product of the
unconditional, or marginal, probabilities of the events:

Pr(E1 1 E2) = Pr(E1) Pr(E2).
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This is sometimes referred to as the multiplication rule
for probabilities.  In this formulation, it is clear that E2

is independent of E1 if E1 is independent of E2, and we
say simply that E1 and E2 are statistically independent.
If Pr(E2) varies depending on whether or not event E1

has occurred, then events E1 and E2 are said to be
statistically dependent.

If E1, E2, ... are mutually exclusive, and if the union of
E1, E2, ... equals the entire sample space, then the events
E1, E2, ... are said to form a partition of the sample
space.  Exactly one of the events must occur, not more
than one but exactly one.  In this case, the law of total
probability says

Pr(A) = 3Pr(A |Ei) Pr(Ei) .

A special case can be written when there are only two
sets.  In this case, write E1 simply as E and E2 as &E .  

Then the law of total probability simplifies to

Pr(A) = Pr(A*E)Pr(E) + Pr(A*&E  )Pr(&E  )  

for any event A.  This formula is the basis for event
trees, which are frequently used to diagram the possibil-
ities in an accident sequence. 

The concepts of mutually exclusive events and statisti-
cally independent events are often confused.  If E1 and
E2 are mutually exclusive events and Pr(E1) and Pr(E2)
are nonzero, Pr(E1 1 E2) = Pr(i) = 0.  From Equation
A.1, Pr(E2*E1) = 0, which does not equal Pr(E2).  Thus,
the two events are not independent.  Mutually exclusive
events cannot be independent and independent events
cannot be mutually exclusive.

Equation A.2 can be used to calculate the probability of
the intersection of a set of events (the probability that
all the events occur simultaneously).  For two events E1

and E2, the probability of simultaneous occurrence of
the events is equal to the probability of E1 times the
probability of E2 given that E1 has already occurred.  In
general, the probability of the simultaneous occurrence
of n events can be written as:

Pr(E1 1 E2 1 ... 1 En) =

Pr(E1) Pr(E2*E1) Pr(E3*E2 1 E1) ... Pr(En*En-1 1 ... 1 E1),

which is referred to as the chain rule.  This rule can be
used to calculate the probability that a given accident
sequence occurs, with E1 denoting the initiating event

and the remaining events corresponding to the failure or
success of the systems that must function in order to
mitigate such an accident.

The probability of occurrence of at least one of a set of
statistically independent events yields a result that is
important to PRA and fault tree applications.  If E1, E2,
..., En are statistically independent events, the probabil-
ity that at least one of the n events occurs is:

Pr(E1 c E2 c ... c En) = (A.3)

1 ! [1 ! (Pr(E1)][1 ! (Pr(E2)] ... [1 ! (Pr(En)],

which is equivalent (with expansion) to using the
inclusion-exclusion rule.  For the simple case where
Pr(E1) = Pr(E2) = ... = Pr(En) = p, the right-hand side of
this expression reduces to 1 ! (1 ! p)n.

The general result in Equation A.3 has application in
PRA and fault tree analysis.  For example, for a system
in which system failure occurs if any one of n independ-
ent events occurs, the probability of system failure is
given by Equation A.3.  These events could be failures
of critical system components.  In general, the events
represent the modes by which system failure (the top
event of the fault tree) can occur.  These modes are
referred to as the minimal cut sets of the fault tree and,
if independent of each other (no minimal cut sets have
common component failures), Equation A.3 applies.
[See Vesely et al. (1981) for further discussion of fault
trees and minimal cut sets.]

If the n events are not independent, the right side of
Equation A.3 may be greater than or less than the left
side.  However, for an important situation that fre-
quently arises in PRA, the right side of Equation A.3
forms an upper bound for the left side.

If the n events are cut sets that are positively associated
[see Esary and Proschan (1970, 1963)], then the right
side is an upper bound for Pr(E1 c E2 c ... c En) and is
known as the min cut upper bound (NRC 1994).  This
name arises from common PRA applications where Ei

is the ith minimal cut set of a system or accident se-
quence of interest.  In this case, the min cut upper
bound is superior to the rare event approximation and
can never exceed unity (as can happen with the rare
event approximation).  If the n events satisfy conditions
similar to those of the rare event approximation, the min
cut set upper bound is a useful approximation to the left
side of Equation A.3.  Note that the min cut upper
bound is not applicable for mutually exclusive events.
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A.4 Random Variables and 
Probability Distributions

A.4.1 Random Variables

A random variable is any rule that associates real
numbers with the outcomes of an experiment.  For
example, the number of initiating events in one year, the
number of failures to start in 12 demands, and the time
to complete a repair of a pump are all random variables.

If the numbers associated with the outcomes of an
experiment are all distinct and countable, the corre-
sponding random variable is called a discrete random
variable.  The number of initiating events and the
number of failures to start are examples of discrete
random variables.

If the sample space contains an infinite number of
outcomes (like those contained in any interval), the
random variable is continuous.  Time T is a common
continuous random variable, for example, time to
failure, time between failures, or time to repair, where
the random variable T can assume any value over the
range 0 to 4.

A.4.2 Probability Distributions

A probability function (introduced at the beginning of
Section A.3) associates a probability with each possible
value of a random variable and, thus, describes the
distribution of probability for the random variable.  For
a discrete random variable, this function is referred to
as a discrete probability distribution function
(p.d.f.).  A discrete p.d.f., commonly denoted by f, is
also referred to as a discrete distribution, or discrete
probability mass function.

If x denotes a value that the discrete random variable X
can assume, the probability distribution function is
often denoted Pr(x).  The notation used here is that a
random variable is denoted by an upper-case letter and
an observed or observable value of the random variable
(a number) is denoted by a lower-case letter.  The sum
of the probabilities over all the possible values of x
must be 1.  Thus, we write f(x) = Pr(X = x), and require
Eif(xi) = 1.

Certain discrete random variables have wide application
and have therefore been defined and given specific
names.  The two most commonly used discrete random
variables in PRA applications are the binomial and
Poisson random variables, which are presented in
Section A.6.

A continuously distributed random variable has a
density function, a nonnegative integrable function,
with the area between the graph of the function and the
horizontal axis equal to 1.  This density function is also
referred to as the continuous probability distribution
function (p.d.f.).  If x denotes a value that the continu-
ous random variable X can assume, the p.d.f. is often
denoted as f(x).  The probability that X takes a value in
a region A is the integral of f(x) over A.  In particular,

Pr( ) ( )a X b f x dxa
b≤ ≤ = ∫

and

Pr(x # X # x + )x) . f(x))x (A.4)

for small )x.  Also,

f x dx( ) =
−∞

∞

∫ 1

The most commonly used continuous distributions in
PRA are the lognormal, exponential, gamma, and
beta distributions.  Section A.7 summarizes the essen-
tial facts about these distributions, and also about less
common but occasionally required distributions:
uniform, normal, Weibull, chi-squared, inverted
gamma, logistic-normal, Student’s t, F, and Diri-
chlet.

A.4.3 Cumulative Distribution Functions

Discrete probability distributions provide point proba-
bilities for discrete random variables and continuous
p.d.f.s provide point densities for continuous random
variables.  A related function useful in probability and
PRA is the cumulative distribution function (c.d.f.).
This function is defined as the probability that the
random variable assumes values less than or equal to
the specific value x, and is denoted F(x).

For a discrete random variable X, with outcomes xi, and
the corresponding probabilities Pr(xi), F(x) is the sum
of the probabilities of all xi # x.  That is,

.F x X x xi

x xi

( ) =  Pr(  ≤ ) =
≤
∑ Pr( )

For a continuous random variable X, F(x) is the area
beneath the p.d.f. f(x) up to x.  That is, F(x) is the
integral of f(x):

F(x) = Pr(X # x) = .f y dy
x

( )
−∞
∫
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If X takes on only positive values, the lower limit of
integration can be set to 0.  The upper limit is x, and f(x)
is the derivative of F(x).  Note that, because F(x) is a
probability, 0 # F(x) # 1.  If X ranges from -4 to +4,
then

F(-4) = 0 and F(+4) = 1.

If X has a restricted range, with a and b being the lower
and upper limits of X respectively, a < X < b, then

F(a) = 0 and F(b) = 1.

Also, F(x) is a nondecreasing function of x, that is,

if x2 > x1, F(x2) $ F(x1).

Another important property of F(x) is that

Pr(x1 < X # x2) = F(x2) ! F(x1)

for discrete random variables and

Pr(x1 # X # x2) = F(x2) ! F(x1)

for continuous random variables.

An example of a p.d.f. and the associated c.d.f. for a
continuous distribution is shown in Figure A.2.

Figure A.2  Probability density function (p.d.f.) and
cumulative distribution function (c.d.f.).

A.4.4 Reliability and Hazard Functions

A.4.4.1 Definitions

There are also characterizations that have special
interpretations for time-to-failure distributions.  Let T
denote the random time to failure of a system.  The
reliability function of a system is defined as

R(t) = Pr(T > t) .

Hence, R(t), called the reliability at time t, is the
probability that the system does not fail in the time
interval (0, t) or equivalently, the probability that the
system is still operating at time t.  (This discussion uses
the notation (a, b) to mean the set of times > a and # b,
but the distinction between < and # is a mathematical
fine point, not important in practice.)  The reliability
function is also sometimes called the survival function.
It is equal to 1 ! F(t).

When used as a reliability criterion, it is common to
state a time, say t0, called the mission time, and require
for a system that the reliability at mission time t0 be at
least some prescribed level, say R0.  For example, a
pump might be required to operate successfully for at
least 12 hours with probability at least 0.95.  The
requirement in this case is R0 = 0.95 and t0 = 12.  In
terms of the reliability function, this would mean R(12)
$ 0.95.  One interpretation would be that such a pump
would perform for the required mission time for 95% of
the situations when it is called on to do so.  Another
interpretation is that 95% of all such pumps would
perform as required.

Consider a system that operates for a particular mission
time, unless it fails.  If it fails, no immediate repairs are
attempted, so some authors call the system
nonrepairable.  A common way to characterize this
system’s reliability is in terms of the hazard function.
Suppose that the system is still operating at time t, and
consider the probability that it will fail in a small
interval of time (t, t + )t).  This is the conditional
probability Pr(t < T # t + )t * T > t).   The hazard
function, h, is defined so that when )t is small,

h(t))t . Pr(t < T # t + )t * T > t)  . (A.5)

This function is also encountered, under the name of 8,
in some treatments of Poisson processes.  Equation A.5
gives, approximately,

h t t
t T t t

T t

f t t

R t

( )
Pr( )

Pr( )

( )

( )

∆
∆

∆

≈
< ≤ +

>

≈

This is the basis for the formal definition of h:

h t
f t

R t
( )

( )

( )
=
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Figure A.3  The reliability function, hazard function
and cumulative hazard function.

For details, see Bain and Engelhardt (1992, p. 541).
Equation A.5 is analogous to Equation A.4, except that
the probability in Equation A.5 is conditional on the
system having survived until t, whereas Equation A.4
refers to all systems in the original population, either
still surviving or not.  Suppose a large number, say N,
of identical systems are put into operation at time t = 0,
and n is the number which fail in the interval (t, t + )t).
It follows that f(t))t . n/N, the observed relative
frequency of systems failed in the interval (t, t + )t).
On the other hand, if Nt denotes the number of the
original N systems which are still in operation at time t,
then h(t))t . n/Nt, the observed relative frequency of
surviving systems which fail in this same interval.
Thus, f(t) is a measure of the risk of failing at time t for
any system in the original set, whereas h(t) is a measure
of the risk of failing at time t, but only for systems that
have survived this long.

The hazard function is used as a measure of “aging” for
systems in the population.  If h(t) is an increasing
function, then systems are aging or wearing out with
time.  Of course, in general the hazard function can
exhibit many types of behavior other than increasing
with time.  In actuarial science the hazard function is
called the force of mortality, and it is used as a mea-
sure of aging for individuals in a population.  More
generally, the hazard function gives an indication of
“proneness to failure” of a system after time t has
elapsed.  Other terms which are also used instead of
hazard function are hazard rate and failure rate.  The
term failure rate is often used in other ways in the
literature of reliability [see Ascher and Feingold (1984),
p. 19]. 

A.4.4.2 Relations among p.d.f., Reliability, and
Hazard

Any one of the functions F, f, R, and h completely
characterizes the distribution, and uniquely determines
the other three functions.  The definition

h t
f t

R t
( )

( )

( )
=

was given above.  The right side can be written as the
derivative of !ln[R(t)], leading to

( ) ( )R t h u du H t
t

( ) exp ( ) exp ( )= = −− ∫0

where the function H(t) is called the cumulative
hazard function.  The reliability function, R(t), and the
c.d.f., F(t) = 1 ! R(t), are therefore uniquely determined

by the hazard function, h(t), and the p.d.f. can be
expressed as

.( )f t h t h u du
t

( ) ( ) exp ( )= − ∫0

Figure A.3 shows the reliability, hazard and the cumula-
tive hazard function for the example of Figure A.2.

The hazard function in Figure A.3 is an increasing
function of time.  Therefore, it would be consistent with
systems with a dominant wear-out effect for the entire
life of the system.  The lifetime of a system may be
divided into three typical intervals: the burn-in or
infant period, the random or chance failure period,
and the wear-out period.  During the useful period, the
dominant cause of failures is “random” failures.  For
example, systems might fail due to external causes such
as power surges or other environmental factors rather
than problems attributable to the defects or wear-out in
the systems.  This example is somewhat idealized
because for many types of systems the hazard function
will tend to increase slowly during the later stages of
the chance failure period.  This is particularly true of
mechanical systems.  On the other hand, for many
electrical components such as transistors and other
solid-state devices, the hazard function remains fairly
flat once the burn-in failure period is over.

A.4.5 Joint, Marginal, and Conditional
Distributions

Many statistical methods are based on selecting a
sample of size n from a probability distribution f(x).
Such a sample is denoted by

(X1 = x1, X2 = x2, ..., Xn = xn) = (x1, x2, ..., xn),
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where x1, x2, ..., xn are the actual values of the random
variable X which has the distribution f(x).

The concepts of simultaneous events and joint, mar-
ginal, and conditional  probability, discussed in Section
A.3, also pertain to random variables and probability
distributions.  Two random variables X1 and X2 (both
continuous, both discrete, or one of each) can have a
joint distribution, or joint p.d.f., denoted f(x1, x2).  The
point (x1, x2) can be thought of as a point in two-dimen-
sional Euclidean space.  Similarly, n random variables
have joint distribution f(x1, x2, ..., xn).  Also, the n
random variables have joint cumulative distribution
F(x1, x2, ..., xn).

The marginal distribution of Xi is defined as the joint
p.d.f. integrated (for continuous random variables) or
summed (for discrete random variables) over the n!1
other corresponding dimensions, resulting in a function
of xi alone.  Thus, the marginal distribution of Xi is the
unconditional p.d.f. of Xi, fi(xi).

The conditional distribution of X1 given X2, denoted
f(x1 | x2), is defined by

,f(x x )
f(x , x )

f (x )
 1 2

1 2

2 2

 =  

where f2(x2) … 0.  This conditional distribution can be
shown to satisfy the requirements of a probability
function.  Sampling from a conditional p.d.f. would
produce only those values of X1 that could occur for a
given value of X2 = x2.  The concept of a conditional
distribution also extends to n random variables.

Two random variables X1 and X2 are independent if
their joint p.d.f. is equal to the product of the two
individual p.d.f.s.  That is,

f(x1, x2) = f(x1) f(x2).

In general, X1, X2, ..., Xn are independent random
variables if

f(x1, x2, ..., xn) = f(x1) @ f(x2) @ . . . @ f(xn).

A.4.6 Characterizing Random Variables
and Their Distributions

A.4.6.1 Distribution Characteristics

Probability distributions have many characteristics of
interest, some of which are described by distribution
parameters.  The term parameter is used to refer to a

fixed characteristic.  In contrast to a statistic, which
changes from sample to sample, a parameter for a
particular distribution is a constant and does not
change.  However, when a parameter’s value is not
known, sample statistics can be used to estimate the
parameter value.  Parameter estimation is discussed in
Appendix B.

A very useful distribution characteristic is the parameter
that serves as a measure of central tendency, which can
be viewed as a measure of the middle of a distribution.
When a change in the parameter slides the distribution
sideways, as with the mean of a normal distribution, the
parameter is referred to as the location parameter.  It
serves to locate the distribution along the horizontal
axis.  Sometimes, however, a change in the parameter
squeezes or stretches the distribution toward or away
from zero, as with the mean of the exponential distribu-
tion.  In that case, the parameter is a scale parameter.

In any case, the most common measure of central
tendency is the mean, µ , of the distribution, which is a
weighted average of the outcomes, with the weights
being probabilities of outcomes.  For a discrete random
variable X,

.µ X i i

i

x x=∑ Pr( )

For a continuous random variable X,

.µ X x f x dx=
−∞

∞

∫ ( )

(In Section A.4.6.2 below, the mean of X will be
denoted E(X), the “expected value” of X.)

Another distribution characteristic commonly used as a
measure of central tendency, or location, is the median.
For a continuous distribution, the median is the point
along the horizontal axis for which 50% of the area
under the p.d.f. lies to its left and the other 50% to its
right.  The median of a random variable, X, is com-
monly designated med(X) or x.50 and, for a continuous
distribution, is the value for which Pr(X # x.50) = .50
and Pr(X $ x.50) = .50.  In terms of the cumulative
distribution, F(x.50) = .50.  The median is a specific case
of the general 100"th percentile, x", for which F(x") =
".  When the factor of 100 is dropped, x" is called the
" quantile.  Along with the median as the 50th percen-
tile (or equivalently, the 0.5 quantile), the 25th and 75th
percentiles are referred to as quartiles of a distribution.
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Figure A.5  Cumulative distribution function (c.d.f.)
showing quartiles, median, and mean.
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Mean

Each area = 0.25

Figure A.4  Density, showing quartiles, median, and
mean.

Figure A.4 shows the quartiles, x0.25 and x0.75, the
median, x0.50, and the mean.  The quartiles and the
median divide the area under the density curve into four
pieces, each with the same area.  Note that the mean is
greater than the median in this example, which is the
usual relation when the density has a long right tail, as
this one does.

Figure A.5 shows the same quantities plotted with the
c.d.f.  By definition, the q quantile, xq, satisfies F(xq)
= q.

The mean and the median are used to measure the
center or location of a distribution.  Since the median is
less affected by tail-area probabilities, it can be viewed
as a better measure of location than the mean for
highly-skewed distributions.  For symmetric distribu-
tions, the mean and median are equivalent.

A different measure of center or location of a distribu-
tion is the mode, which indicates the most probable
outcome of a distribution.  The mode is the point along

the horizontal axis where the “peak” or maximum of the
p.d.f. is located.  Note that the mode does not necessar-
ily have to be near the middle of the distribution.  It
simply indicates the most likely value of a distribution.
Note also that a peak does not have to exist and, in
some cases, more than one peak can exist.

Another important characteristic of a distribution is its
variance, denoted by F2.  The variance is the average
of the squared deviations from the mean.  The standard
deviation, F, of a distribution is the square root of its
variance.  Both the variance and standard deviation are
measures of a distribution’s spread or dispersion.  For
a discrete random variable X,

.σ µX i i

i

x x2 2= −∑ ( Pr( ))

For a continuous random variable X,

.σ µX x f x dx2 2= −
−∞

∞

∫ ( ) ( )

Though less used than the mean and variance, the
skewness is defined as

E(X ! :)3/F3 .

It measures asymmetry.  It is usually positive if the
density has a longer right tail than left tail, and negative
if the density has a longer left tail than right tail.  For
example, the density in Figure A.4 has positive skew-
ness.

A.4.6.2 Mathematical Expectation

The definitions of distribution means and variances
arise from mathematical expectation and moments of
a distribution, which form an important method for
calculating the parameters of a known p.d.f.  In general,
the expectation (expected value or mathematical
expectation) of a function g(X), denoted E[g(X)], is

,E g X g x xi i

i

[ ( )] ( ) Pr( )=∑

when X is discrete, and

,E g X g x f x dx[ ( )] ( ) ( )=
−∞

∞

∫

when X is continuous.
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Because of their wide use, several expectations have
special names.  For g(X) = X, the expectation E(X)
becomes the mean of X.  Thus, the mean is also com-
monly referred to as the expected value (or expectation)
of the random variable X.  In addition, for g(X) = X, the
expectation E(X) is known as the first moment about
the origin.

The variance, FX
2, also denoted by Var(X), of a distribu-

tion is defined by mathematical expectation with g(X)
= (X ! :X)2.  Thus,

Var(X) = FX
2 = E[(X ! :X)2] = E(X 2) ! [E(X)]2,

which is known as the second moment about the
mean.

Ordinary moments (moments about the origin) of a
random variable X are defined as

Mr = E(Xr),

for r = 1, 2, ... .  Thus,

Var(X) = FX
2 = E(X 2) ! [E(X)]2 = M2 ! M1

2.

Central moments (moments about the mean) of a
random variable X are defined as being equal to E[(X !
:)r] for r = 2, 3, ... .  The ordinary and central moments
can be seen to define characteristics of distributions of
random variables.

An important rule of expectation commonly used in
PRA is that the expected value of a product of inde-
pendent random variables is the product of their respec-
tive expected values.  That is, E(X1AX2A ... AXn) =
E(X1)AE(X2)A ... AE(Xn) when all Xi are independent.  This
rule also applies to conditionally independent random
variables.  If the random variables X2, X3, ..., Xn are all
conditionally independent given X1 = x1, then

f(x2, x3, ..., xn*x1) = f(x2*x1)Af(x3*x1)A ... Af(xn*x1).

It follows that 

E(X2AX3A ... AXn*x1) = E(X2*x1)AE(X3*x1)A ... AE(Xn*x1).

Thus,

E(X1AX2A ... AXn) = E[X1AE(X2*x1)AE(X3*x1)A ... AE(Xn*x1)].

The following facts are also often useful:

• E(Ei Xi) = Ei E(Xi), whether or not the Xis are
independent.

• Var(Ei Xi) = Ei Var(Xi), if the Xis are independent.
• E(aX + b) = aE(X) + b .
• Var(aX + b) = a2Var(X) .
• The last two give useful special cases when a = 1

or b = 0.

A.4.6.3 Moment-Generating Functions

Another special mathematical expectation is the
moment-generating function of a random variable.
For a random variable X with p.d.f. f(x), the moment-
generating function of X (or of the distribution) is
defined by M(t) = E(etX), if M exists for some interval
!h < t < h.  Therefore, if X is a continuous random
variable,

.M t e f x dxtx( ) ( )=
−∞

∞

∫

If X is a discrete random variable,

.M t e f xtx
i

i

i( ) ( )=∑

Note that not every distribution has a moment-generat-
ing function.

The importance of the moment-generating function is
that, when it does exist, it is unique and completely
specifies the distribution of the random variable.  If two
random variables have the same moment-generating
function, they have the same distribution.

It can be shown that the moments of a distribution can
be found from the series expansion of M(t).  The
moments of the distribution can also be determined
from the moment-generating function by differentiating
the moment-generating function with respect to t and
setting t = 0.  See Martz and Waller (1991) and any of
several mathematical statistics texts, such as Hogg and
Craig (1995), for further details on moment-generating
functions.

A.4.6.4 Covariance and Correlation

For two random variables, X and Y, with means :x and
:y, the expected value E[(X ! :x)(Y ! :y)] is called the
covariance of X and Y, denoted Cov(X, Y).  The
covariance of X and Y divided by the product of the
standard deviations of X and Y is called the correlation
coefficient (or correlation) between X and Y, denoted
Cor(X, Y).  That is,
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The correlation coefficient measures the degree of
association between X and Y, that is, the strength of a
linear relationship between X and Y.  It is always
between !1 and 1.  Positive correlation (correlation >
0) means that X and Y tend to be large together and
small together in a linear way.  Negative correlation
means that X tends to be large when Y is small and vice
versa, in a linear way.  If X and Y are independent, then
their correlation is zero.  The converse is not true;
examples can be constructed where X and Y are depend-
ent (in a nonlinear way) yet have zero correlation.

A.4.7 Distribution of a Transformed 
Random Variable

This section considers the distribution of Y = h(X),
when X has a known distribution and h is a known
function.  The problem is straightforward when X has a
discrete distribution.  When X is continuous and h is
monotone, either increasing or decreasing, the c.d.f.s
are also related in the natural way, as follows.  Let F be
the c.d.f. of X and let G be the c.d.f. of Y.  Then we
have

G(y) = Pr(Y # y) = Pr[h(X) # y] .

If h is monotone increasing, this equals

Pr[X # h-1(y)] = F(x),

where x and y are related by y = h(x), x = h-1(y).  In
summary, G(y) = F(x).

If, instead, h is monotone decreasing, then a similar
argument gives

G(y) = 1 ! F(x) .

The surprise comes with the densities.  Differentiate
both sides of either of the above equations with respect
to y, to obtain the density of y.  This involves using the
chain rule for differentiation.  The result is

 .g y f x
dx

dy
( ) ( )=

That is, the density of Y is not simply equal to the
density of X with a different argument.  There is also a
multiplier, the absolute value of the derivative.

Two important special cases are given here.  If Y =
exp(X), then

g(y) = f[ln(y)](1/y)  .

If Y = 1/X, then

g(y) = f(1/y)(1/y2) .

These formulas form the basis for the densities of the
lognormal distribution and the inverted gamma distri-
bution.

A.5 Bayes’ Theorem

It is frequently desired to calculate the probability of an
event A given that another event B has occurred at some
prior point in time.  It can also be of interest to calculate
the probability that a state of nature exists given that a
certain sample is observed, for example, belonging to a
certain population based on a sample measurement or
observation.  Conditional probability leads directly to
Bayes’ Theorem, which, along with subjective proba-
bility, forms the basis for Bayesian inference commonly
used in PRA.

Recall the definition of a partition from Section A.3:
A1, A2, ..., An are a partition of the sample space if the
are mutually exclusive and their union equals the entire
sample space.  Bayes’ Theorem states that if A1, A2, ...,
An are a partition of the sample space and if B is any
other event such that Pr(B) > 0, then

, (A.6)Pr(
Pr( Pr(

Pr(
A B

B A A

B
i

i i) = ) )

)

where

.Pr( Pr( (B B A Aj j

j

n

) =
=
∑ ) Pr )

1

This last equation is the law of total probability (Sec-
tion A.3).  Equation A.6 follows from the definition of
conditional probability in Equation A.1:

.Pr(
Pr(

Pr(

Pr( Pr(

Pr(
A B

B A

B

B A A

Bi
i i i) =  

∩ )
=

)
)

)

)
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The Pr(Ai*B) is the posterior (or a posteriori) probabil-
ity for the event Ai, meaning the probability of Ai once
B is known.  The Pr(Ai) is the prior (or a priori) proba-
bility of the event Ai before experimentation or observa-
tion.  The event B is the observation.  The Pr(B*Ai) is
the probability of the observation given that  Ai is true.
The denominator serves as a normalizing constant.

Calculating the posterior probabilities Pr(Ai*B) requires
knowledge of the probabilities Pr(Ai) and Pr(B*Ai), i =
1, 2, ..., n.  The probability of an event can often be
determined if the population is known, thus, the
Pr(B*Ai) can be determined.  However, the Pr(Ai), i = 1,
2, ..., n, are the probabilities that certain states of nature
exist and are either unknown or difficult to ascertain.
These probabilities, Pr(Ai), are called prior probabilities
for the events Ai because they specify the distribution of
the states of nature prior to conducting the experiment.

Application of Bayes’ Theorem utilizes the fact that
Pr(B*Ai) is easier to calculate than Pr(Ai*B).  If proba-
bility is viewed as degree of belief, then the prior belief
is changed, by the test evidence, to a posterior degree of
belief.  In many situations, some knowledge of the prior
probabilities for the events A1, A2, ..., An exists.  Using
this prior information, inferring which of the sets A1, A2,
..., An is the true population can be achieved by calculat-
ing the Pr(Ai*B) and selecting the population that
produces the highest probability.

Equation A.6 pertains to disjoint discrete events and
discrete probability distributions.  Bayes’ Theorem has
analogous results for continuous p.d.f.’s.  The continu-
ous version is given here.  Suppose X is a discrete or
continuous random variable, with p.d.f. depending on
parameter 2, and with conditional p.d.f. of X, given 2,
specified by f(x*2).  Suppose that 2 has a continuous
probability distribution with p.d.f. g(2).  This can
happen in two ways: either 2 is a possible value of the
random variable 1 (using the convention of denoting
random variables with uppercase letters), or else 2 is an
uncertain parameter with a subjective uncertainty
distribution.  The second case is the more common one.
Call g(2) the prior p.d.f.  Then for every x such that
f(x) > 0 exists, the posterior p.d.f. of 2, given X = x, is

, (A.7)g x
f x g

f x
( )

( ) ( )

( )
θ

θ θ
=

where

f x f x g d( ) ( ) ( )= ∫ θ θ θ

is the marginal p.d.f. of X.  Again, the prior and poste-
rior p.d.f.’s can be used to represent the probability of

various values 2 prior to and posterior to observing a
value of another random variable X.  This is valid
whether “probability of 2” has a frequentist or subjec-
tive interpretation.

A.6 Discrete Random Variables

A.6.1 The Binomial Distribution

The binomial distribution describes the number of
failures X in n independent trials.  The  random variable
X has a binomial distribution if:

1. The number of random trials is one or more and is
known in advance.

2. Each trial results in one of two outcomes, usually
called success and failure (although they could be
pass-fail, hit-miss, defective-nondefective, etc.).

3. The outcomes for different trials are statistically
independent.

4. The probability of failure, p, is constant across
trials.

Equal to the number of failures in the n trials, a bino-
mial random variable X can take on any integer value
from 0 to n.  The probability associated with each of
these possible outcomes, x, is defined by the bino-
mial(n, p) p.d.f. as

Pr( ) ( )

... , .

,X x
n

x
p p

x n

x n x= = −

=

⎛
⎝
⎜

⎞
⎠
⎟ −1

0,

Here

 
n

x
n

x n x

⎛
⎝
⎜
⎞
⎠
⎟ =

−
!

!( )!

is the binomial coefficient.  The symbol

n! = n(n !1)(n !2) ... (2)(1)

denotes n factorial, with 0! defined to be equal to 1.
This binomial coefficient provides the number of ways
that exactly x failures can occur in n trials (number of
combinations of n trials selected x at a time).

The binomial distribution has two parameters, n and p,
of which n is known.  (Although n may not always be
known exactly, it is treated as known in this handbook.)

The mean and variance of a binomial(n, p) random
variable X are
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n p= 4,  = 0.25

n p= 12,  = 0.25

n p= 40,  = 0.25

Figure A.6  Three binomial probability distribution
functions.

E(X) = np

and

Var(X) = np(1 ! p).

Figure A.6 shows three binomial probability distribu-
tion functions, with parameter p = 0.25, and n = 4, 12,
and 40.  In each case, the mean is np.  The means have
been aligned in the three plots.

A.6.2 The Poisson Distribution

The Poisson distribution provides a discrete probability
model that is appropriate for many random phenomena
that involve counts.  Examples are counts per fixed time
interval of the number of items that fail, the number of
customers arriving for service, and the number of

telephone calls occurring.  A common use of the
Poisson distribution is to describe the behavior of many
rare event occurrences.  The Poisson distribution is also
frequently used in applications to describe the occur-
rence of system or component failures under steady-
state conditions.

The count  phenomena that occur as Poisson random
variables are not necessarily restricted to occurring over
a time interval.  They could also be counts of things
occurring in some region, such as defects on a surface
or within a certain material.  A process that leads to a
Poisson random variable is said to be a Poisson pro-
cess.

The Poisson distribution describes the total number of
events occurring in some interval of time t (or space).
The p.d.f. of a Poisson random variable X, with parame-
ter : = 8t, is

(A.8)

for x = 0, 1, 2, ..., and x! = x(x ! 1)(x ! 2) ... (2)(1), as
defined previously.

The Poisson distribution has a single parameter :,
denoted Poisson(:).  If X denotes the number of events
that occur during some time period of length t, then X
is often assumed to have a Poisson distribution with
parameter : = 8t.  In this case, X is considered to be a
Poisson process with intensity 8 > 0 (Martz and Waller
1991).  The variable 8 is also referred to as the event
rate (or failure rate when the events are failures).
Note that 8 has units 1/time; thus, 8t = : is
dimensionless.

If only the total number of occurrences for a single time
period t is of interest, the form of the p.d.f. in Equation
A.8 using : is simpler.  If the event rate, 8, or various
time periods, t, are of interest, the form of the p.d.f. in
Equation A.8 using 8t is more useful.

The expected number of events occurring in the interval
0 to t is : = 8t.  Thus, the mean of the Poisson distribu-
tion is equal to the parameter of the distribution, which
is why : is often used to represent the parameter.  The
variance of the Poisson distribution is also equal to the
parameter of the distribution.  Therefore, for a Pois-
son(:) random variable X,

E(X) = Var(X) = : = 8t.
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Figure A.7  Three Poisson probability distribution
functions.

Figure A.7 shows three Poisson probability distribution
functions, with means : = 1.0, 3.0, and 10.0, respec-
tively.  The three means have been aligned in the
graphs.  Note the similarity between the Poisson distri-
bution and the binomial distribution when : = np and n
is not too small.

Several conditions are assumed to hold for a Poisson
process that produces a Poisson random variable:

1. For small intervals, the probability of exactly one
occurrence is approximately proportional to the
length of the interval (where 8, the event rate or
intensity, is the constant of proportionality).

2. For small intervals, the probability of more than
one occurrence is essentially equal to zero (see
below).

3. The numbers of occurrences in two non-overlap-
ping intervals are statistically independent.

More precise versions of condition 2 are:  (1) the
probability of more than one event occurring in a very
short time interval is negligible in comparison to the
probability that only one event occurs (Meyer 1970),
(2) the probability of more than one event occurring in
a very short time interval goes to zero faster than the
length of the interval (Pfeiffer and Schum 1973), and
(3) simultaneous events occur only with probability
zero (Çinlar 1975).  All of these versions have the
practical interpretation that common cause events do
not occur.  The phrase “do not occur” is used in this
handbook, as it is in Thompson (1981).

The Poisson distribution also can serve as an approxi-
mation to the binomial distribution.  Poisson random
variables can be viewed as resulting from an experiment
involving a large number of trials, n, that each have a
small probability of occurrence, p, of an event.  How-
ever, the rare occurrence is offset by the large number
of trials.  As stated above, the binomial distribution
gives the probability that an occurrence will take place
exactly x times in n trials.  If p = :/n (so that p is small
for large n), and n is large, the binomial probability that
the rare occurrence will take place exactly x times is
closely approximated by the Poisson distribution with
: = np.  In general, the approximation is good for large
n, small p, and moderate : (say : # 20) [see Derman et
al. (1973)].

The Poisson distribution is important because it de-
scribes the behavior of many rare event occurrences,
regardless of their underlying physical process.  It also
has many applications to describing the occurrences of
system and component failures under steady-state
conditions.  These applications utilize the relationship
between the Poisson and exponential (continuous
random variable, see Section A.7.4) distributions:  the
times between successive events follow an exponential
distribution.

A.7 Continuous Random Variables

A.7.1 The Uniform Distribution

A uniform distribution, also referred to as a rectangular
distribution, represents the situation where any value in
a specified interval, say [a, b], is equally likely.  For a
uniform random variable, X, because the outcomes are
equally likely, f(x) is equal to a constant.  The p.d.f. of
a uniform distribution with parameters a and b, denoted
uniform(a, b), is

f x
b a

( ) =
−
1
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Figure A.8  Density of uniform(a, b) distribution.

Figure A.9  Two normal densities.

for a # x # b.

Figure A.8 shows the density of the uniform(a, b)
distribution.

The mean and variance of a uniform(a, b) distribution
are

E X
b a

( ) = +
2

and

Var( )
( )

.X
b a= − 2

12

A.7.2 The Normal Distribution

One of the most widely encountered continuous proba-
bility distributions is the normal distribution, which has
the familiar bell shape and is symmetrical about its
mean value.  The importance of the normal distribution
is due to:  (1) its applicability in describing a very large
number of random variables that occur in nature and (2)
the fact that certain useful functions of nonnormal
random variables are approximately normal.  Details on
the derivation of the normal distribution can be found
in many basic mathematical statistics textbooks [e.g.,
Hogg and Craig (1995)].

The normal distribution is characterized by two parame-
ters, : and F.  For a random variable, X, that is nor-
mally distributed with parameters : and F, the p.d.f. of
X is

(A.9)f x
x

( ) exp= − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1

2

1

2

2

σ π
µ

σ

for !4 < x < 4, !4 < : < 4, and F > 0.  Increasing :
moves the density curve to the right and increasing F
spreads the density curve out to the right and left while
lowering the peak of the curve.  The units of : and F
are the same as for X.

The mean and variance of a normal distribution with
parameters : and F are

E(X) = :

and

Var(X) = F2.

The normal distribution is denoted normal(:, F2).

Figure A.9 shows two normal(:, F2) densities.  The
distribution is largest at : and is more concentrated
around : when F is small than when F is large.

Note the similarity of the normal density to a binomial
p.d.f. with large np or a Poisson p.d.f. with large :.
This illustrates the fact that a normal distribution can
sometimes be used to approximate those distributions.

The normal(0, 1) distribution is called the standard
normal distribution, which, from Equation A.9, has
p.d.f.

(A.10)φ
π

( ) expx
x= −⎛

⎝⎜
⎞
⎠⎟

1

2 2

2

for !4 < x < 4.  The cumulative distribution of the
standard normal distribution is denoted by M.  Tables
for the standard normal distribution are presented in
Appendix C and in almost all books on statistics.

It can be shown that the transformed random variable Z
= (X ! :)/F is normal(0, 1).  Thus, to calculate proba-
bilities for a normal(:, F2) random variable, X, when :
… 0 and/or F2 … 1, the tables for the standard normal can
be used.  Specifically, for any number a,



Basics of Probability

A-16

Pr[ X # a ] =  Pr[ (X ! :)/F # (a !:)/F ]

=  Pr[ Z # (a ! :)/F ]

=  M[ (a ! :)/F ] .

Part of the importance of the normal distribution is that
it is the distribution that sample sums and sample means
tend to possess as n becomes sufficiently large.  This
result is known as the central limit theorem, which
states that, if X1, X2, ..., Xn, are independent random
variables, each with mean : and variance F2, the sum of
these n random variables, 'iXi, tends toward a nor-
mal(n:, nF2) distribution for large enough n.  Since the
sample mean is a linear combination of this sum, the

central limit theorem also applies.  Thus,  = 'iXi/nX
tends to a normal(:, F2/n) distribution.  The importance
of the central limit theorem is it can be used to provide
approximate probability information for the sample
sums and sample means of random variables whose
distributions are unknown.  Further, because many
natural phenomena consist of a sum of several random
contributors, the normal distribution is used in many
broad applications.

Because a binomial random variable is a sum, it tends
to the normal distribution as n gets large.  Thus, the
normal distribution can be used as an approximation
to the binomial distribution.  One rule of thumb is that
the approximation is adequate for np $ 5.

A Poisson random variable also represents a sum and,
as presented previously, can also be used as an approxi-
mation to the binomial distribution.  It follows that the
normal distribution can serve as an approximation to
the Poisson distribution when : = 8t is large.  One
rule of thumb is that the approximation is adequate for
: $ 5.

A.7.3 The Lognormal Distribution

Use of the lognormal distribution has become increas-
ingly widespread.  It is commonly used as a distribution
for failure time and in maintainability analysis (Martz
and Waller 1991).  It has also been widely used as a
prior distribution for unknown positive parameters.

The lognormal distribution arises from the product of
many independent random variables.  If Y = Y1@Y2@ ... @Yn

=(iYi is the product of n independent positive random
variables that are (nearly) identically distributed, then
ln(Y) = ln((iYi) = 'iln(Yi) is a sum that tends toward a
normal distribution.

The distribution of Y is defined to be lognormal when
the distribution of ln(Y) is normal.  That is, when Y is
lognormal, ln(Y) is normal(:, F2).  The parameters of
the lognormal distribution are : and F, the parameters
from the underlying normal distribution.  For a random
variable, Y, that is lognormally distributed with parame-
ters : and F, denoted lognormal(:, F2), the p.d.f. of Y
is

( )f y
y

y( ) exp ln= − −⎡
⎣⎢

⎤
⎦⎥

1

2

1

2 2

2

σ π σ
µ

for 0 < y < 4, !4 < : < 4, and F > 0.  Note the y in the
denominator, for reasons explained in Section A.4.7.
The mean and variance of a lognormal(:, F2) distribu-
tion are

E(Y) = exp(: + F2/2)

and

Var(Y) = exp(2: + F2)[exp(F2) ! 1].

In addition, the median of a lognormal distribution is
exp(:) and the mode is exp(:!F2).  See Martz and
Waller (1991) for more information on the lognormal
distribution.

Sometimes the median of Y = exp(:) is used as a
parameter.  In addition, a parameter commonly used in
PRA is the error factor (EF), where EF = exp(1.645F).
This definition causes EF to satisfy

Pr[med(Y)/EF # Y # med(Y)*EF] = 0.90.

Figure A.10 shows three lognormal densities.  The
value : = !7 corresponds to a median of about 1.E!3.
[More exactly, it corresponds to exp(!7) = 9.E!4.]
The value : = !6.5 corresponds to a median of about
1.5E!3.  The value F = 0.67 corresponds to an error
factor EF = 3, and F = 1.4 corresponds to an error
factor EF = 10.

The two distributions with F = 0.67 and different values
of : have essentially the same shape, but with different
scales.  The larger : corresponds to spreading the
distribution out more from zero.  The distribution with
F = 1.4, and therefore EF = 10, has a very skewed
distribution.

To calculate probabilities for a lognormal(:, F2)
random variable, Y,  the tables for the standard normal
can be used.  Specifically, for any number b,
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Figure A.10  Three lognormal densities.
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Figure A.11  Two exponential densities.

Pr[ Y # b ] =  Pr[ ln(Y) # ln(b) ]

=  Pr[ X # ln(b) ]

=  M[ (ln(b) ! :)/F ] ,

where X = ln(Y) is normal(:, F2).

A.7.4 The Exponential Distribution

The exponential distribution is widely used for
modeling time to failure and is inherently associated
with the Poisson process [see Martz and Waller
(1991)].  For a Poisson random variable X defining the
number of failures in a time interval t and for a random
variable T defining the time to failure, it can be shown
that T has the exponential p.d.f.

f(t) = 8e!8t,

for t > 0.  Thus, the time to first failure and the times
between successive failures follow an exponential
distribution and the number of failures in a fixed time
interval follows a Poisson distribution.

Figure A.11 shows two exponential densities, for two
values of 8 .  The intercept (height of the curve when t
= 0) equals 8 .  Thus, the figure shows that the distribu-
tion is more concentrated near zero if 8 is large.  This
agrees with the interpretation of 8 as a frequency of
failures and t as time to first failure.

The exponential distribution parameter, 8, corresponds
to the 8t parameterization of the Poisson p.d.f. in
Equation A.8 and is referred to as the failure rate if the
component or system is repaired and restarted immedi-
ately after each failure.  It is called the hazard rate if
the component or system can only fail once and cannot
be repaired.  Section A.4.4.2 discusses modeling

duration times with different distributions and defines
the hazard rate as h(t) = f(t)/[1 ! F(t)].  For the expo-
nential distribution, the hazard rate is constant, 8.  It
can be shown that the exponential distribution is the
only distribution with a constant hazard rate.

The c.d.f. of the exponential distribution is

F(t) = 1 ! e!8t.

The exponential distribution with parameter 8 is
denoted exponential(8). The mean and variance of an
exponential(8) distribution are

E(T) = 1/8

and

Var(T) = 1/82.

The relationship of the exponential distribution to the
Poisson process can be seen by observing that the
probability of no failures before time t can be viewed in
two ways.  First, the number of failures, X, can be
counted.  The probability that the count is equal to 0 is
given by Equation A.8 as 

 .Pr( )
( )

!
X e

t
et t= = =− −0

0

0
λ λλ

Alternatively, the probability that first failure time, T, is
greater than t is

Pr(T > t)  = 1 ! Pr(T # t)
 = 1 ! F(t)
 = 1 ! [1 ! e!8t]
 =  e!8t.
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Thus, the two approaches give the same expression for
the probability of no failures before time t.

The assumptions of a Poisson process require a constant
failure rate, 8 , which can be interpreted to mean that
the failure process has no memory (Martz and Waller
1991).  Thus, if a device is still functioning at time t, it
remains as good as new and its remaining life has the
same exponential(8) distribution.  This constant failure
rate corresponds to the flat part of the common bathtub
curve (frequency of failures plotted against time) and
does not pertain to initial (burn-in) failures and wear-
out failures.

A different, sometimes useful, parameterization uses :
= 1/8 = E(T).  For example, if T represents a time to
failure, : is called the mean time to failure.  If T is the
time to repair, or to fire suppression, or to some other
event, the name for : is the mean time to repair, or
other appropriate name.  The exponential(:) distribu-
tion for T has density

f(t) = (1/:)exp(!t/:), for t $ 0

and c.d.f.

F(t) = 1 ! exp(!t/:), for t  $ 0 .

The units of : are the same as the units of t, minutes or
hours or whatever the data have.  The mean and vari-
ance are

E(T) = :
var(T) = :2 .

A.7.5 The Weibull Distribution

The Weibull distribution is widely used in reliability
and PRA and generalizes the exponential distribution to
include nonconstant failure or hazard rates (Martz and
Waller 1991).  Different Weibull distributions have
been successfully used to describe initial failures and
wear-out failures.  The Weibull distribution is appropri-
ate when a system is composed of a number of compo-
nents, and system failure is due to any one of the
components failing.  It, therefore, is commonly referred
to as a distribution corresponding to failure of the
weakest link.

For a random variable, T, that has a Weibull distribu-
tion, the p.d.f. is

,f t
t t
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for t $ 2 $ 0 and parameters " > 0 and $ > 0.  The
parameter 2 is a location parameter and corresponds to
a period of guaranteed life that is not present in many
applications (Martz and Waller 1991).  Thus, 2 is
usually set to zero.  The c.d.f. for T is
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for t $2 and " > 0 and $ > 0.

The " parameter is a scale parameter that expands or
contracts the density along the horizontal axis.  The $
parameter is a shape parameter that allows for a wide
variety of distribution shapes. [See Martz and Waller
(1991) for further discussion and examples.]  When $
= 1, the distribution reduces to the exponential distribu-
tion.  Therefore, the Weibull family of distributions
includes the exponential family of distributions as a
special case.

A Weibull distribution with parameters ", $, and 2 is
referred to as Weibull(", $, 2) and, when 2 = 0,
Weibull(", $).  The mean and variance of the Weibull
distribution are given by Martz and Waller (1991) as

2 + "'(1 + 1/$)

and

"2['(1 + 2/$) ! '2(1 + 1/$) .

Here, ' is the gamma function, defined in Section
A.7.6.

Figure A.12 shows four Weibull densities, all with the
same scale parameter, ", and all with location parame-
ter 2 = 0.  The shape parameter, $, varies.  When $ < 1,
the density becomes infinite at the origin.  When $ = 1,
the distribution is identical to the exponential distribu-
tion.  Surprisingly, the distribution is not asymptotically
normal as $ becomes large, although it is approximately
normal when $ is near 3.

A.7.6 The Gamma and Chi-Squared
Distributions

The gamma distribution is an extension of the expo-
nential distribution and is sometimes used as a failure
time model (Martz and Waller 1991).  It is also often
used as a prior distribution in Bayesian estimation (see
Appendix B) of the failure rate parameter 8 from
Poisson(8t) or exponential(8) data.  The chi-squared
distribution is a re-expression of a special case of the
gamma distribution.
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Figure A.12  Four Weibull densities, all having 2 = 0
and all having the same ".

The gamma distribution arises in many ways.  The
distribution of the sum of independent exponential(8)
random variables is gamma, which forms the basis for
a confidence interval for 8 from exponential(8) data.
Because the sum of n independent exponentially
distributed random variables has a gamma distribution,
the gamma distribution is often used as the distribution
of the time, or waiting time, to the nth event in a Pois-
son process.  In addition, the chi-squared distribution is
the distribution for a sum of squares of independent,
identically distributed normal random variables, which
forms the basis for a confidence interval for the vari-
ance of a normal distribution.  The gamma distribution
is also often used as a distribution for a positive random
variable, similar to the lognormal and Weibull distribu-
tions.  In PRA work, it is often used as a Bayesian
distribution for an uncertain positive parameter.

Two parameterizations of the gamma distribution are
common, with various letters used for the parameters.
The parameterization given here is most useful for
Bayesian updates, the primary use of the gamma
distribution in this handbook.  For a random variable, T,
that has a gamma distribution, the p.d.f. is

,f t t t
a

( )
( )

exp( )= −−β
α βα

Γ
1

for t, ", and $ > 0.  

Here

Γ ( )α α= − −∞

∫ x e dxx1

0

is the gamma function evaluated at ".  If " is a posi-
tive integer, '(") = (" ! 1)!.

A gamma distribution with parameters " and $ is
referred to as gamma(", $).  The mean and variance of
the gamma(", $) random variable, T, are:

E(T) = "/$

and

Var(T) = "/$ 2.

The parameters " and $ are referred to as the shape and
scale parameters.  The shape parameter " allows the
density to have many forms.  If " is near zero, the
distribution is highly skewed.  For " = 1, the gamma
distribution reduces to an exponential($!1) distribution.
Also, the gamma(" = n/2, $ = ½) distribution is known
as the chi-squared distribution with n degrees of
freedom, denoted P2(n).  The p.d.f. for the P2(n) distri-
bution is found by substituting these values into the
above formula for the gamma p.d.f.  It also can be
found in many statistics texts [e.g., Hogg and Craig
(1995, Chapter 4)].

In addition, if T has a gamma(", $) distribution, then
2$T has a P2(2") distribution, which forms the defining
relationship between the two distributions.  The gamma
and chi-squared distributions can, therefore, be viewed
as two ways of expressing one distribution.  Since the
chi-squared distribution usually is only allowed to have
integer degrees of freedom, the gamma distribution can
be thought of as an interpolation of the chi-squared
distribution.

Percentiles of the chi-squared distribution are tabulated
in Appendix C.  These tables can be used as follows to
find the percentiles of any gamma distribution.  The
100×p percentile of a gamma(", $) distribution is
P2

p(2")/(2$), where P2
p(2") denotes the 100×p percen-

tile of the chi-squared distribution with 2" degrees of
freedom.

Figure A.13 shows gamma densities with four shape
parameters, ".  When " < 1, the density becomes
infinite at 0.  When " = 1, the density is identical to an
exponential density.  When " is large, the distribution
is approximately a normal distribution.

As stated previously, the sum of exponential lifetimes
or waiting times has a gamma distribution, with the
shape parameter " equal to the number of exponential
lifetimes.  Also, it has been stated that in general the
sum of independent, identically distributed random
variables is approximately normal.  This is the reason
why the gamma distribution is approximately normal
when " is large.
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Figure A.13  Gamma densities with four shape param-
eters.

Figure A.14  Four inverted gamma densities, having the
same scale parameter, $, and various shape parameters,
".

An alternative parameterization of the gamma distribu-
tion uses the scale parameter, say J = $!1.  If T has a
gamma(", J) distribution, its p.d.f. is

f t t t( )
( )

exp( / )= −−1
1

τ α
τα

α

Γ

for t, ", and J > 0.  The mean and variance of the
gamma(", J) random variable, T, are:

E(T) ="J

and

Var(T) = "J2.

This alternative parameterization is useful in a very
small portion of this handbook.

A.7.7 The Inverted Gamma and Inverted
Chi-Squared Distributions

The inverted gamma distribution is often used as a
prior distribution for Bayesian estimation of the mean
of an exponential distribution (Martz and Waller 1991).
It is also used as a prior and posterior distribution for F2

when the data have a normal distribution with variance
F2 (Box and Tiao 1973, Lee 1997).

For a gamma(", $ ) random variable, T, W = 1/T has an
inverted gamma distribution with p.d.f.

 ,f w
w w
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for w, ", and $ > 0.  The parameters here are the same
as for the gamma distribution.  For example, if T has
units of time then w and $ both have units 1/time.  A
comparison of this density with the gamma density
shows that this density has an extra w2 in the denomi-
nator, for reasons explained in Section A.4.7.

The parameters of the inverted gamma distribution are
" and $ and this distribution is denoted inverted
gamma(", $).  Just as with the gamma(", $) distribu-
tion, " is the shape parameter and $ is the scale parame-
ter.  The distribution can also be parameterized in terms
of J = $!1.

The mean and variance of an inverted gamma(", $)
random variable, W, are

, " > 1,E W( ) =
−
β

α 1
and

, " > 2.Var( )
( ) ( )

W =
− −

β
α α

2

21 2

Note that for " # 1 the mean and higher moments do
not exist.  For 1 < " # 2 the mean exists but the vari-
ance does not exist (Martz and Waller 1991).

Figure A.14 shows four inverted gamma distributions,
all having the same scale parameter, $, and having
various shape parameters, ".
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Figure A.16  Four beta distributions with mean 0.1.

Figure A.15  Beta distributions with mean = 0.5.

In the special case with " = n/2 and $ = ½, the distribu-
tion is called the inverted chi-squared distribution
with n degrees of freedom.  Values from this distribu-
tion are sometimes denoted P!2(n).  This form of the
distribution is often used in connection with a prior for
F2 when the data are normally distributed.

A.7.8 The Beta Distribution

Many continuous quantitative phenomena take on
values that are bounded by known numbers a and b.
Examples are percentages, proportions, ratios, and
distance to failure points on items under stress.  The
beta distribution is a versatile family of distributions
that is useful for modeling phenomena that can range
from 0 to 1 and, through a transformation, from a to b.

The beta distribution family includes the uniform
distribution as well as density shapes that range from
decreasing to uni-modal right-skewed to symmetric to
U-shaped to uni-modal left-skewed to increasing (Martz
and Waller 1991).  It can serve as a model for a reliabil-
ity variable that represents the probability that a system
or component lasts at least t units of time.  The beta
distribution is also widely used in Bayesian estimation
and reliability analysis as a prior distribution for the
binomial distribution parameter p that represents a
reliability or failure probability.

The p.d.f. of a beta random variable, Y, is

,f y y y( )
( )
( ) ( )

( )= + −− −Γ
Γ Γ

α β
α β

α β1 11

for 0 # y # 1, with the parameters ", $ > 0.  The distri-
bution is denoted beta(", $).  The gamma functions at
the front of the p.d.f. form a normalizing constant so
that the density integrates to 1.

The mean and variance of the beta(", $) random
variable, Y, are

E Y( ) =
+
α

α β

and

.Var( )
( ) ( )

Y =
+ + +

αβ
α β α β2 1

Various beta distributions are shown in Figures A.15
and A.16.  Figure A.15 shows beta densities with " = $,
and therefore with mean 0.5.  When " < 1, the density

becomes infinite at 0.0, and when $ < 1, the density
becomes infinite at 1.0.  When " = $ = 1, the density is
uniform.  When " and $ are large, the density is ap-
proximately normal.

Figure A.16 shows densities with mean 0.1.  Again,
when " < 1, the density becomes infinite at 0.0, and
when " > 1, the density is zero at 0.0.  As the parame-
ters " and $ become large, the density approaches a
normal distribution.

Another parameterization of the beta distribution uses
the parameters x0 = " and n0 = " + $. This parameteri-
zation is used by Martz and Waller (1991) because it
simplifies Bayes formulas and Bayesian estimation.
The p.d.f. of a beta(x0, n0) is

,f y
n

x n x
y yx n x( )

( )

( ) ( )
( )= −

−

− − −Γ
Γ Γ

0

0 0 0

1 10 0 01

for 0 # y # 1, with the parameters x0 and n0 satisfying 

n0 > x0 > 0.
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Figure A.17  Three logistic-normal densities with
median = 0.5.

The mean and variance of the beta(x0, n0) random
variable, Y, are

E Y
x

n
( ) = 0

0

and

.Var( )
)

( )

(
Y

x n x

n n
= −

+
0 0 0

0
2

0 1

Percentiles of the beta distribution occur in the formula
for a confidence interval for p, and in the formula for a
Bayes credible interval for p when a conjugate prior is
used.  Some percentiles are tabulated in Appendix C.
In addition, many software packages, including some
commonly used spreadsheets, can calculate these
percentiles.  If none of these work, Martz and Waller
(1991) give a method for finding the beta percentiles
from the corresponding percentiles of an F distribution,
discussed in Section A.7.11.  The  F distribution is
tabulated in most statistics books, and can be interpo-
lated if necessary with good accuracy.  The relation is

betaq(", $) = " / [" + $F1 ! q(2$, 2")]

for small q, and 

betaq(", $) = "Fq(2", 2$) / [$ + " Fq(2", 2$)]

for large q.  Here betaq(", $) denotes the q quantile, or
the 100×q percentile, of the beta(", $) distribution, and
Fq(d1, d2) denotes the q quantile of an F distribution
with d1 and d2 degrees of freedom.  So if all else fails,
and a statistics book with F tables is nearby, the first
formula can be used to find the lower percentile of the
beta distribution and the second formula can be used to
find the upper percentile.  This method is not discussed
further here, because it is not expected to be needed
often. 

A.7.9 The Logistic-Normal Distribution

While not widely used in PRA, this distribution is
commonly used for Bayesian inference in other fields of
application, especially as a prior for the binomial
parameter p when p could plausibly be fairly large. X
has a logistic-normal distribution if ln[X/(1 ! X)] is
normally distributed with some mean : and variance F2.
The function ln[X/(1 ! X)] may appear strange, but it is
common enough in some areas of application to have a
name, the logit function.  Therefore, the above state-
ments could be rewritten to say that X has a logistic-
normal distribution if logit(X) is normally distributed.

Properties of the logistic-normal distribution are
summarized here.

• Let y = ln[x/(1 ! x)].  Then x = ey / (1 + ey).  This
implies that x must be between 0 and 1.

• As x increases from 0 to 1, y = ln[x/(1 ! x)] in-
creases monotonically from !4 to +4.  Thus, y can
be generated from a normal distribution with no
problem of forcing x outside its possible range.

• The monotonic relation between x and y means that
the percentiles match.  For example, the 95th
percentile of Y is  : + 1.645F. Denote this by y0.95.
Therefore, the 95th percentile of X is 
x0.95 = exp( y0.95) / [1 + exp( y0.95)].
Alternatively, this can be written as
y0.95 = ln[x0.95 / (1 ! x0.95 )] .

• If X is close to 0 with high probability, so that
X/(1 ! X) is close to X with high probability, then
the logistic-normal and lognormal distributions are
nearly the same.

The third bullet shows how to find the percentiles of a
logistic-normal distribution.  Unfortunately there is no
equally easy way to find the moments, such as the mean
or variance.  Moments must be found using numerical
integration.

Figure A.17 shows several logistic normal distributions
that all have median 0.5.  These correspond to a nor-
mally distributed y with mean : = 0 and with various
values of F.  Figure A.18 shows several logistic normal
distributions that all have median 0.1.  These corre-
spond to a normally distributed y with mean : = !2.2 =
ln[0.1/(1 ! 0.1)].
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Figure A.18  Three logistic-normal densities with
median = 0.1.

Note the general similarities to the beta distributions in
Figures A.15 and A.16.  Note also the differences:
Logistic-normal distributions are characterized most
easily by percentiles, whereas beta distributions are
characterized most easily by moments.  Also, the beta
densities can be J-shaped or U-shaped, but the logistic-
normal densities always drop to zero at the ends of the
range.

A.7.10  Student’s t Distribution

The Student’s t distribution is not used in a central way
in PRA.  However, it appears in a peripheral way in
places in this handbook, when dealing with the parame-
ters of a normal or lognormal distribution, or in large-
sample situations when a distribution is approximated
as normal or lognormal.  Therefore, the basic facts are
summarized here.

If (1) Z has a standard normal distribution, (2) X has a
chi-squared distribution with d degrees of freedom, and
(3) Z and X are statistically independent, then

T
Z

X d
=

/

has a Student’s t distribution with d degrees of freedom.
Therefore, T has a distribution that is symmetrical about
0, and it can take values in the entire real line.  If d is
large, the denominator is close to 1 with high probabil-
ity, and T has approximately a standard normal distribu-
tion.  If d is smaller, the denominator adds extra vari-
ability, and the extreme percentiles of T are farther out
than are the corresponding normal percentiles.  Tables
of the distribution are given in Appendix C.

Although not needed for ordinary work, the p.d.f. and
first two moments of T are given here. [See many
standard texts, such DeGroot (1975) or Bain and Engel-
hartd (1992).]  The p.d.f. is

 .[ ]f t
d

d d
t

d
( )

[( ) / ]

( ) ( / )
( / )/

( )/
=

+
+

− +Γ
Γ
1 2

2
1 21 2

2 1 2

π

If d > 1 the mean is 0.  If d > 2 the variance is d/(d!2).
If d # 2 the variance does not exist.  If d = 1, even the
mean does not exist; in this case the distribution is
called a Cauchy distribution.

A.7.11  F Distribution

The F distribution, also called Snedecor’s F distribu-
tion, arises as follows.  If Y and Z are independent chi-
squared random variables with m and n degrees of
freedom, respectively, then 

X
Y m

Z n
=

/

/

has an F distribution with m and n degrees of freedom.
This is sometimes written as an F(m, n) distribution.
This can be re-expressed in terms of a ratio of gamma-
distributed variables, because the chi-squared distribu-
tion is a special case of a gamma distribution.

The density of an F distribution is almost never needed,
although it is given in mathematical statistics books as

 f x
m n m n

m n

x

mx n

m n m

m n( )
[( ) / ]

( / ) ( / ) ( )

/ / ( / )

( )/=
+

+
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Γ Γ

2

2 2

2 2 2 1

2

for x $ 0.  Bain and Engelhardt (1992) give the mo-
ments:

E(X) = n/(n ! 2)

Var(X) =  .
2 2

2 4

2

2

n m n

m n n

( )

( ) ( )

+ −
− −

The mean is defined only if n > 2, and the variance only
if n > 4.

It follows from the definition in terms of a ratio of chi-
squared variables that the percentiles are related to each
other as follows.  If Fq(m, n) is the q quantile (that is,
the 100q percentile) of an F(m, n) distribution, then

Fq(m, n) = 1/F1 ! q(n, m) . (A.11)
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The F distribution is also related to the beta distribu-
tion, and Equation (A.11) forms the basis for the two
different forms of the relation given near the end of
Section A.7.8.

The distribution is not tabulated in Appendix C for two
reasons: the distribution is used only minimally for the
applications in this handbook, and the percentiles and
probabilities are given by many commonly used soft-
ware packages.

A.7.12  Dirichlet Distribution

The Dirichlet distribution is a multivariate generaliza-
tion of the beta distribution.  Let m variables Y1, ..., Ym

be such that EiYi = 1.  Their distribution can be de-
scribed in terms of any m ! 1 of them, such as Y1, ...,
Ym!1 with

 .Y Ym i
i

m

= −
=

−

∑1
1

1

The m variables have a Dirichlet distribution with
parameters "1, ..., "m if the joint density of the first m !
1 variables is
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Observe that when m = 2 this reduces to a beta distri-
bution for Y1 with parameters "1 and "2.  (Some authors
say that Y1, ..., Ym have the Dirichlet distribution, while
others say that Y1, ..., Ym!1 have this distribution.  The
distribution is the same whichever way it is described.)

Many of the properties of the distribution are described
most easily in terms of an additional parameter ",
defined as " = "1 + ... + "m.  Some of these properties
are the following.

Individually, each Yi has a beta("i, " ! "i) distribution.
Therefore, we have

E(Yi) = "i /", and

Var(Yi) ="i(" ! "i)/["2(" + 1)].

It can also be shown that the covariance terms are given
by

Cov(Yi, Yj) = !"i"j /["2(" + 1)].

Thus, the ratio of each "i to " determines the corre-
sponding mean.  Once the means are fixed, the magni-
tude of " determines the variances and covariances,
with large " corresponding to small variances.  The
covariances are negative, meaning that if one variable
is larger than its mean, each other variable tends to be
smaller than its mean; this is not surprising for variables
that must sum to 1.

One application of the Dirichlet distribution in PRA is
to multiple-branch nodes in event trees.  If an event tree
has a node with m branches, m > 2, the probability of
the ith branch (also called the ith “split fraction”) can be
denoted pi.  The probabilities must satisfy p1 + ... + pm

= 1.  They are not known exactly, and therefore are
assigned a joint distribution that describes their uncer-
tainty in a Bayesian way.  The Dirichlet distribution is
a natural distribution to use.

For further information about this distribution, see the
article in the Encyclopedia of Statistical Sciences, or 
Kotz, Balakrishnan, and Johnson (2000).
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B.  BASICS OF STATISTICS

B.1 Random Samples

When sampling from a distribution (or population), it is
usually assumed that the n observations are taken at
random, in the following sense.  It is assumed that the
n random variables X1, X2, ..., Xn are independent.  That
is, the sample X1, X2, ..., Xn, taken from a distribution
f(x), has the joint p.d.f. h satisfying

h(x1, x2, ..., xn) = f(x1) A f(x2) A . . . A f(xn).

This follows the definition of independent random
variables given in Section A.4.5.  A sample taken in this
way is called a random sample.  (As elsewhere in this
handbook, upper case letters denote random variables
and lower case letters denote particular values, num-
ber.)

The random variables X1, X2, ..., Xn forming such a
random sample are referred to as being independent and
identically distributed.  If n is large enough, the sam-
pled values will represent the distribution well enough
to permit inference about the true distribution.

B.2 Sample Moments

Mathematical expectation and moments provide charac-
teristics of distributions of random variables.  These
ideas can also be used with observations from a random
sample from a distribution to provide estimates of the
parameters that characterize that distribution.

A statistic is a function of one or more random vari-
ables that does not depend on any unknown parameters.
A function of random variables that can be computed
from the collected data sample is thus a statistic.  Note
that a function of random variables is also a random
variable that has its own probability distribution and
associated characteristics.

If X1, X2, ..., Xn denote a random sample of size n from
a distribution f(x), the statistic

X
X

n
i

i

n

=
=
∑

1

is the mean of the random sample, or the sample
mean and the statistic

(B.1)
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is the variance of the random sample.  Note that n !
1 is used as the denominator in the S2 statistic to make
the statistic an unbiased estimator of the population
variance, F2 (unbiased estimators are discussed in
Section B.4.1).  Some authors use n in the denominator
instead of n ! 1, with corresponding adjustment of
formulas that involve S, but this handbook uses Equa-
tion B.1 consistently.  In applications with computer
packages, note which definition is used and make any
necessary adjustments to formulas in this handbook.

Although not used as much as the sample mean and
sample variance, the sample skewness is occasionally
of interest.  The definition can vary in detail, but one,
used by SAS (1988) is
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Similarly, the statistics defined by
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for r = 1, 2, ..., are called the sample moments.

One of the common uses of statistics is estimating the
unknown parameters of the distribution from which the
sample was generated.  The sample mean, or average,

 is used to estimate the distribution mean, or popu-X ,
lation mean, :, the sample variance, S2, is used to
estimate the population variance, F2, and so forth.

B.3 Statistical Inference

Since values of the parameters of a distribution are
rarely known, the distribution of a random variable is
rarely completely known.  However, with some assump-
tions and information based on a random sample of
observations from the distribution or population, values
of the unknown parameters can often be estimated.
Probabilities can then be calculated from the corre-
sponding distribution using these parameter estimates.
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Statistical inference is the area of statistics concerned
with using sample data to answer questions and make
statements about the distribution of a random variable
from which the sample data were obtained.  Parameter
estimators are functions of sample data that are used to
estimate the distribution parameters.  Statements about
parameter values are inferred from the specific sample
to the general distribution of the random variable or
population.  This inference cannot be perfect; all
inference techniques involve uncertainty.  Understand-
ing the performance properties of various estimators has
received much attention in the statistics field.

For the purposes of this handbook, statistical inference
procedures can be classified as follows:

• parameter estimation
-   estimation by a point value
-   estimation by an interval

• hypothesis testing
-   tests concerning parameter values
- goodness-of-fit tests and other model-validation

tests.

Parametric statistical inference assumes that the
sample data come from  a particular, specified family of
distributions, with only the parameter values unknown.
However, not all statistical inference is based on
parametric families.  In many cases, in addition to not
knowing the distribution parameter values, the form of
the  parametric family of distributions is unknown.
Distribution-free, also called nonparametric, tech-
niques are applicable no matter what form the distribu-
tion may have.  Goodness-of-fit tests are an important
type of nonparametric tests that can be used to test
whether a data set follows a hypothesized distribution.

For statistical inference, two major approaches exist,
the frequentist approach and the Bayesian approach.
The two resulting sets of inference tools are summa-
rized in Sections B.4 and B.5.  In PRA work, Bayesian
estimators are normally used for parameter estimation.
See, for example, NUREG-1489 (NRC 1994).  How-
ever, frequentist hypothesis tests are often used for
model validation, especially when the hypothesis to be
tested does not involve a simple parameter.  This use of
Bayesian techniques for estimation and frequentist
techniques for model validation is also recommended
by Box (1980).

NUREG-1489 (NRC 1994) lists a number of “advan-
tages” and “disadvantages” for each of the Bayesian
and frequentist approaches.  An “advantage” is often in
the eye of the beholder.  For example, is it an advantage
or disadvantage that frequentist methods use only the

data at hand, not external or prior information?  There-
fore, the lists from that report are presented in  modified
and augmented form in Table B.1, where the points are
not called advantages or disadvantages, but simply
“features.”

B.4 Frequentist Inference

Frequentist estimation of distribution parameters uses
only the information contained in the data sample and
assumptions about a model for the sample data.  In
contrast to Bayesian estimation (discussed in Section
B.5), degree of belief is not incorporated into the
estimation process of frequentist estimation.

In the frequentist approach to estimation, a distribution
parameter is treated as an unknown constant and the
data to be used for estimation are assumed to have
resulted from a random sample.  Information outside
that contained in the sample data is used minimally.
The random variability in the sample data is assumed to
be due directly to the process under study.  Thus, the
frequentist approach addresses variation in parameter
estimates and how far estimates are from the true
parameter values.

Frequentist testing of a hypothesis follows the same
spirit.  The hypothesis is assumed, and the data are
compared to what would have been expected or predic-
ted by the hypothesis.  The frequentist analyst asks whe-
ther the observed values come from the likely part of
the distribution or from the extreme tails, and decides in
this way whether the data are consistent with the
hypothesis.

B.4.1 Point Estimation

Many situations arise in statistics where a random
variable X has a p.d.f. that is of known functional form
but depends on an unknown parameter 2 that can take
on any value in a set.  The different values for 2
produce a family of distributions.   One member of the
family corresponds to each possible value of 2.
Estimators of the distribution parameter are functions
of sample data that are used to estimate the distribution
parameters.  Thus, estimators are themselves random
variables.  The specific value of the estimator computed
from a random sample provides an estimate of the
distribution parameter.  Note the distinction between
estimator, a random variable, and estimate, a particular
value. An estimate of a distribution parameter in the
form of a single number is called a point estimate of
that parameter.  The sample mean is a point estimate of
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Table B.1  Features of Bayesian and frequentist approaches.

Bayesian Approach Frequentist Approach

Bayesian methods allow the formal introduction of prior
information and knowledge into the analysis, which can
be especially useful when sample data are scarce, such as
for rare events.  For the nuclear industry, this knowledge
often exists in the form of industry-wide generic data.
Thus, Bayesian estimation allows the use of various types
of relevant generic data in PRA.

Results depend only on the data sample.  Including
relevant information about a parameter that is external to
the random sample is complicated.

If the prior distribution accurately reflects the uncertainty
about a parameter, Bayesian parameter estimates are
better than classical estimates.

Bayesian estimation can be sensitive to the choice of a
prior distribution.  Therefore:
Identifying suitable prior distributions and  justifying and
gaining acceptance for their use can be difficult.
The choice of a prior distribution is open to criticism that
the choice is self-serving and may reflect inappropriate,
biased, or incorrect views.

Because Bayesian probability intervals can be interpreted
as probability statements about a parameter, they are
easily combined with other sources of uncertainty in a
PRA using the laws of probability.

A confidence interval cannot be directly interpreted as a
probability that the parameter lies in the interval.

Bayesian distributions can be propagated through fault
trees, event trees, and other logic models.

It is difficult or impossible to propagate frequentist
confidence intervals through fault and event tree models
common in PRA to produce corresponding interval
estimates on output quantities of interest.

Using Bayes’ Theorem, Bayesian estimation provides a
method to update the state of knowledge about a parame-
ter as additional data become available.

Frequentist methods can update an earlier analysis if the
original data are still available or can be reconstructed.

In complicated settings, Bayesian methods require
software to produce samples from the distributions.

In complicated settings, frequentist methods must use
approximations.  In some cases they may be unable to
analyze the data at all.

Bayesian hypothesis tests are commonly used only with
hypotheses about a parameter value.

A well-developed body of hypothesis tests exists, useful
for model validation.  These are appropriate for investi-
gating goodness of fit, poolability of data sources, and
similar questions that do not involve a simple parameter.

Both Approaches

When the quantity of data is large, both approaches produce good estimates.

Both types of computation are straightforward when estimating a parameter in a simple setting.
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the mean of the distribution and the sample variance is
a point estimate of the variance of the distribution.  For
another sample drawn from the same population, a
different sample mean and variance would be calcu-
lated.  In fact, these sample statistics are specific values
of random variables.  Thus, viewed as random variables
the sample statistics have their own sampling distribu-
tions.  For example, it can be shown that  has meanX
: and variance F2/n, regardless of the distribution from
which the samples are drawn.

Different techniques exist for obtaining point estimates
for unknown distribution characteristics or parameters.
Two of the most common methods are presented here
[see Hogg and Craig (1995) for more information]:
maximum likelihood estimation and the method of
moments.

A distribution of a random variable X that depends on
an unknown parameter 2 will be denoted f(x; 2).  If X1,
X2, ..., Xn is a random sample from f(x; 2), the joint
p.d.f. of  X1, X2, ..., Xn is f(x1; 2)Af(x2; 2)A ... Af(xn; 2).
This joint p.d.f. may be viewed as a function of the
unknown parameter 2 and, when so viewed, is called
the likelihood function, L, of the random sample.
Thus, the likelihood function is the joint p.d.f. of X1, X2,
..., Xn, denoted

,L x x x f xn i
i

n

( ; , ,..., ) ( ; )θ θ1 2
1

=
=

∏

viewed as a function of 2.  The maximum likelihood

estimate of 2 is defined as the value  such that L( ;$θ $θ
x1, x2, ..., xn) $ L(2; x1, x2, ..., xn) for every value of 2.
That is, the maximum likelihood estimate of 2 is the

value  that maximizes the likelihood function.  In$θ
many cases, this maximum will be unique and can often
be obtained through differentiation.  Note that solving
the derivative set to zero for 2 may be easier using
ln(L), which is equivalent since a function and its
natural logarithm are maximized at the same value of
2.

The maximum likelihood estimate is a function of the

observed random sample x1, x2, ..., xn.  When  is$θ
considered to be a function of the random sample X1,

X2, ..., Xn, then  is a random variable and is called the$θ
maximum likelihood estimator of 2.

Another method of point estimation is the method of
moments, which involves setting the distribution
moments equal to the sample moments:

Mr = E(Xr) = mr = 'ixi
r/n,

for r = 1, 2, ..., k, if the p.d.f. f(x; 21, 22, ..., 2k) has k
parameters.  The k equations can be solved for the k

unknowns 21, 22, ..., 2k and the solutions $ , $ , ..., $θ θ θ1 2 k

are the method-of-moments estimators.

How “well” a point estimator estimates a parameter has
received a large amount of attention.  Numerous desir-
able properties of point estimators exist.  One desirable
property of estimators, alluded to previously in Section
B.2,  is unbiasedness.  An unbiased estimator is one
whose mean value is equal to the parameter being

estimated.  That is, an estimator is unbiased for a$θ
parameter 2 if E( ) = 2.  For a random sample from$θ
a normal distribution, the sample mean, , and theX
sample variance, S2, are unbiased estimators of : and
F2, respectively.  (Recall that S2 is defined by Equation
B.1, with n ! 1 in the denominator.)  However, the
method of moments estimator of the variance is biased.

The bias of an estimator  is defined as .$θ E( $)θ θ−

Minimum variance is another desirable property of an
estimator.  An unbiased estimator is said to have
minimum variance if its variance is less than or equal to
the variance of every other unbiased statistic for 2.
Such an estimator is referred to as an unbiased, mini-
mum variance estimator.

Another desirable property of estimators is sufficiency.
For a random sample X1, X2, ..., Xn from f(x; 21, 22, ...,

2m), and  functions (statistics) of the Xis,$ , $ , ..., $θ θ θ1 2 m

the statistics  are jointly sufficient statis-$ , $ , ..., $θ θ θ1 2 m

tics if the conditional p.d.f. of the Xis given the statistics

, g(x1, x2, ..., xn* ), is independent of the$θj s $ , $ , ..., $θ θ θ1 2 m

parameters (Martz and Waller, 1991).

Sufficiency can be thought of as exhausting all the
possible information about a parameter that is contained
in the random sample.  When a sufficient statistic exists,
it may serve as the basis for a minimum variance or
“best” estimator of the parameter.  Sufficiency is also
important because it simplifies Bayesian estimation
methods.

Under certain commonly occurring conditions, as the
sample size gets large, the maximum likelihood
estimator is approximately normally distributed, ap-
proximately unbiased, and has approximately the
minimum variance.  It is, therefore, a very good
estimator for large data sets.  The maximum likelihood
estimator is not necessarily good for small data sets.
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Several other methods of estimation and desirable
properties for estimators exist.  Further information can
be found in Hogg and Craig (1995) or Kendall and
Stuart (1973).

B.4.2 Interval Estimation

Another way of estimating a parameter is to identify
that it falls in some interval (lcl, ucl) with a specified
degree of certainty, or confidence, where lcl denotes the
lower confidence limit and ucl denotes the upper
confidence limit.  The interval (lcl, ucl) is referred to as
an interval estimate of the parameter.  The lcl and ucl
values are calculated from the random sample from the
given distribution. Associating a level of desired
confidence with an interval estimate produces a confi-
dence interval.  The level of desired confidence is also
referred to as the confidence coefficient.

Confidence intervals are based on estimators associated
with a random sample (functions of the data), LCL for
the lower confidence limit and UCL for the upper
confidence limit, such that, prior to observing the
random sample, the probability that the unknown
parameter, 2, is contained in the interval [LCL, UCL] is
known.  That is,

Pr[LCL # 2 # UCL] = 1 ! "

for 0 < " < 1.

Once the random sample has been generated, the
functions LCL and UCL produce two values, lcl and
ucl.  The interval (lcl, ucl) is called a two-sided confi-
dence interval with confidence level 1 ! ", or equiva-
lently, a 100(1 ! ")% two-sided confidence interval.
Similarly, upper one-sided confidence intervals or
lower one-sided confidence intervals can be defined
that produce only an upper or lower limit, respectively.

Since the true parameter value, although unknown, is
some constant, the interval estimate either contains the
true parameter value or it does not.  A 95% confidence
interval is interpreted to mean that, for a large number
of random samples from the same distribution, 95% of
the resulting intervals (one interval estimate of the same
population parameter constructed the same way for
each sample) would contain the true population parame-
ter value, and 5% of the intervals would not.  The " =
.05 risk of obtaining an interval that does not contain
the parameter can be increased or decreased.  Values
for 1 ! " should be decided upon prior to obtaining the
random sample, with .99, .95, and .90 being typical.
Note that higher confidence levels result in wider
interval estimates.

Confidence intervals cannot be interpreted as probabil-
ity statements about the parameter being estimated,
because the parameter is assumed to be an unknown
constant and not a random variable. The level of
confidence pertains to the percentage of intervals, each
calculated from a different random sample from the
same distribution, that are expected to contain the true
parameter value.  The confidence does not pertain to
the specific calculated interval (it could be from the
unlucky 5% of intervals that do not contain the true
parameter value).

As an example, a confidence interval for the parameter
: can be produced from a random sample drawn from
a normal(:, F2) population by calculating the appropri-
ate functions of the data.  Recall that, if each sample
value is drawn from a normal distribution, the sample

mean  has a normal(:, F2/n) distribution, where n isX
the sample size.  Even if the sample values are drawn
from a distribution that is not normal, by the central

limit theorem,  will be approximately normal(:,X
F2/n) for sufficiently large n.  Assuming that F2 is
known (from previous data and experience), the stan-
dardized normal random variable

Z
X

n
=

− µ
σ /

is normal(0, 1), and tabulated in Appendix C.  From
these tables, values of w can be found for which

Pr[!w # Z # w] = 1 ! ". (B.2)

For example, for " = .05, w = 1.96.  In this case, w is
the 97.5th percentile of the standard normal distribu-
tion, commonly denoted z0.975, or z1!"/2 for " = .05.

Substituting for Z in Equation B.2 above, along with
some algebraic manipulation, produces

,Pr[ ]X w
n

X w
n

− ≤ ≤ + = −
σ

µ
σ

α1

which defines a 100(1 ! ")% confidence interval for
the population mean :, where

(B.3)LCL X w
n

= −
σ

and

, (B.4)UCL X w
n

= +
σ
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with w = z1!"/2.

A random sample will yield a specific sample mean.
The numbers w and n are known, and F was assumed to
be known.  Therefore, for a preassigned confidence
level, values for LCL and UCL can be calculated to
produce a specific 100(1 ! ")% confidence interval for
:.  Each of the random variables LCL and UCL is a
statistic, and the interval (LCL, UCL) is a random
interval formed from these statistics.

Usually the value of F is not known.  In this case, the
unbiased estimator of the population variance, S2, can
be used to produce S, which can be used in the above
equations in place of F.  Thus, the following  standard-
ized random variable, T, can be formed:

T
X

S n
=

− µ
/

(This formula requires the definition of S based on
Equation B.1.)  For sufficiently large n (say 25 or 30),
T follows a normal(0, 1) distribution.  If n is not suffi-
ciently large, T follows a Student’s t distribution, for
which tabulated probabilities exist in many statistics
books, and in Appendix C.  The Student’s t distribution
depends on a parameter called the degrees of freedom.
In the present example, this parameter equals n ! 1.
Confidence intervals for the population mean can then
be calculated similarly to the case where F is known,
using either the Student’s t distribution or, when n is
large, the normal distribution.

Confidence intervals can also be constructed for differ-
ences of means and many other population parameters,
such as variances, probabilities, quantiles, and distribu-
tion characteristics (see, for example, Hogg and Craig
1978).

B.4.3 Hypothesis Testing

Testing a statistical hypothesis is another major area of
statistics.  A hypothesis is a statement about the distri-
bution of the observable random variable.  Often this
statement is expressed as a statement about one or more
parameters of the distribution.  As discussed previously,
estimation uses information in the data from a random
sample to infer something about the magnitude of a
parameter value.   Similar to estimation, hypothesis
testing also uses information from the random sample.
However, the objective of hypothesis testing is to
determine whether the specific statement about the
distribution is true.

The hypothesis to be tested is referred to as the null
hypothesis, denoted by H0.  The alternative to the null
hypothesis is referred to as the alternative hypothesis,
denoted H1 or Ha.  A test of a hypothesis is a rule or
procedure for deciding whether to reject or accept the
null hypothesis.  This rule or procedure is based upon
information contained in the random sample and
produces a single number, called a test statistic, which
leads to a decision of whether the sample values do not
support H0.  The entire set of values that the test statis-
tic may assume is divided into two regions, one corre-
sponding to the rejection region and the other to the
acceptance region.

If the test statistic computed from a particular sample
has a value in the rejection region, H0 is rejected.  If the
test statistic falls in the acceptance region, H0 is said to
be accepted, due to lack of evidence to reject.  For each
of the two possible cases for H0, true or false, the test
either rejects or does not reject H0, producing four
distinct possibilities.  These possibilities (using condi-
tional probability notation), along with some concepts
and terms associated with hypothesis testing, are
summarized in Table B.2  (Martz and Waller, 1991).

Table B.2  Possible hypothesis test outcomes.

H0 True H0 False

Accept H0 Pr(accept H0 | H0 is true) = 1!"
= Level of confidence

Pr(accept H0 | H0 is false) = $
= Pr(Type II Error)

Reject H0 Pr(reject H0 | H0 is true) = "
= Level of significance
= Pr(Type I Error)

Pr(reject H0 | H0 is false) = 1!$
= Power
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A stated null hypothesis is either true or false.  One of
two errors can occur in hypothesis testing:

1. rejection of the null hypothesis when it is true,
referred to as the Type I error; and

2. acceptance of the null hypothesis when it is false,
referred to as the Type II error.

The probability of making a Type I error, denoted by
", is referred to as the significance level of the test.
Thus, 1 ! " is the probability of making a correct
decision when H0 is true.  The probability of making a
correct decision when H0 is false, denoted 1 ! $, is
referred to as the power of the test.  The probability of
making a Type II error is equal to one minus the power
of the test, or $.

The goodness of a statistical hypothesis test is measured
by the probabilities of making a Type I or a Type II
error.  Since " is the probability that the test statistic
will fall in the rejection region, assuming H0 to be true,
increasing the size of the rejection region will increase
" and simultaneously decrease $ for a fixed sample
size.  Reducing the size of the rejection region will
decrease " and increase $.  If the sample size, n, is
increased, more information will be available for use in
making the decision, and both " and $ will decrease.

The probability of making a Type II error, $, varies
depending on the true value of the population parame-
ter.  If the true population parameter is very close to the
hypothesized value, a very large sample would be
needed to detect such a difference.  That is, the proba-
bility of accepting H0 when H0 is false, $, varies de-
pending on the difference between the true value and
the hypothesized value.  For hypothesis tests, " is
specified prior to conducting the random sample.  This
fixed " specifies the rejection region.  For a deviation
from the hypothesized value that is considered practical
and that is wished to be detectable by the hypothesis
test, a sample size can be selected that will produce an
acceptable value of $.

Different alternative hypotheses will result in different
rejection regions for the same H0.  This is seen most
easily for a hypothesis that is expressed in terms of a
parameter, for example, H0: : = :0 for some given
value :0.  In this case, there is an exact correspondence
between one-sided and two-sided confidence intervals
and rejection regions for one-sided and two-sided
alternative hypotheses.  If the hypothesized value falls
outside a 100(1 ! ")% confidence interval for the
corresponding population parameter, the null hypothe-
sis would be rejected with level of confidence equal to
1 ! ".

For the example presented in the previous section,
Section B.4.2, the 100(1 ! ")% two-sided confidence
interval for a population mean is defined by the LCL
and UCL in Equations B.3 and B.4.  For the hypothe-
sized value of the mean, say :0, if :0 < lcl or :0 > ucl,
H0 would be rejected.  Equivalently, the test statistic in
Equation B.2 can be computed using  : = :0 and, for
" = .05, if it is greater than 1.96 or less than -1.96, H0

would be rejected with 95% level of confidence.

To further illustrate these concepts, a more detailed
example is presented.  Atwood et al. (1998) assert that
for non-momentary losses of offsite power with plant-
centered causes, the recovery times are lognormally
distributed with median 29.6 minutes and error factor
10.6.  This is equivalent to X being normally distributed
with : = ln(29.6) = 3.388 and F = ln(10.6)/1.645 =
1.435, where X = ln(recovery time in minutes).  Sup-
pose that a plant of interest has experienced five such
losses of offsite power in recent history.  It is desired to
test whether the plant’s recovery times follow the
claimed distribution.

To simplify the situation, the question is formulated in
terms of : only, assuming that F = 1.435.  The null
hypothesis is

H0:  : = 3.388 .

Because only long recovery times are of concern from
a risk standpoint, the alternative hypothesis is defined
as

H1:  : > 3.388 .

That is, values <3.388 are possible, but are not of
concern.  The test statistic, based on n = 5 recovery
times, is to reject H0 if

  .Z
X

w=
−

>
3388

1435 5

.

. /

To make ", the probability of Type I error, equal to
0.05, w is chosen to be the 95th percentile of the
standard normal distribution, 1.645.  Then the test can
be re-expressed as rejecting H0 if 

 .X > 4 44.

The upper part of Figure B.1 shows the density of X
when : = 3.388.  The area to the right of 4.44 is 

,Pr( . |X H> 4 44 0   is true)

which equals 0.05.
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Figure B.2  Power curves when n = 5 and n = 10.  The
graph shows the probability of rejecting H0, as a
function of the true :.

Figure B.1  Probability of rejecting H0: : = 3.388, if in
fact H0 is true (upper distribution), and if H0 is false
with : = 4.09 (lower distribution).

What if H0 is false?  For example, a median 60-minute
recovery time corresponds to : = ln(60) = 4.09.  The
lower part of Figure B.1 shows the density of  whenX
: = 4.09.  The area to the right of 4.44 is

,Pr( . | . )X > =4 44 4 09  µ

which is equal to 0.29.  This value represents the power
of the hypothesis test when : = 4.09 and is the proba-
bility of (correctly) rejecting H0.  The probability of a
Type II error when  : = 4.09 is 1 ! 0.29 = 0.71.

It can be useful to plot the power as a function of :.
The plot is called a power curve.  Figure B.2 shows
two power curves, corresponding to n = 5 and n = 10.
The probability of Type I error, that is, the probability
of rejecting H0 when H0 is true, is shown as ".  The
probability of Type II error, that is, the probability of
accepting H0 when H0 is false, is shown as $ for one
value of :, and equals 1 minus the power.  The two
tests, with n = 5 and n = 10, have both been calibrated
so that " = 0.05.  The power, for any value of : in H1,
is larger when n = 10 than when n = 5; equivalently, the
probability of Type II error is smaller.

The interpretation of confidence in hypothesis testing is
also the same as with confidence intervals.  That is, the
confidence is not in one specific test statistic.  The
confidence arises from the viewpoint that if the random
sample was collected a number of times in the same
way and if H0 was true, 100(1 ! ")% of the tests would
result in not rejecting H0.

As can be seen, interval estimation and hypothesis
testing are closely related.  Some experimenters prefer
expressing inference as estimators.  Others prefer to test
a particular hypothesized value for the parameter of
interest.  

B.4.4 Goodness-of-Fit Tests

The methods presented above are concerned with
estimating the parameters of a distribution, with the
actual form of the distribution assumed to be known (or
the central limit theorem applies with large n).  Other
hypothesis tests do not assume that only a parameter is
unknown.  In particular, goodness-of-fit tests are
special hypothesis tests that can be used to check on the
assumed distribution itself.  Based on a random sample
from some distribution, goodness-of-fit tests test the
hypothesis that the data are distributed according to a
specific distribution.  In general, these tests are based
on a comparison of how well the sample data agree with
an expected set of data from the assumed distribution.

Perhaps the most familiar goodness-of-fit test is the chi-
square test.  The test statistic used for this statistical
test has an approximate P2 distribution, leading to the
name of the test.  A random sample of n observations,
X1, X2, ..., Xn, can be divided or binned into k groups or
intervals, referred to as bins, producing an empirical
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distribution.  The assumed distribution under the null
hypothesis, f0(x), is used to calculate the probability that
an observation would fall in each bin, with the probabil-
ities denoted by p1, p2, ..., pk.

These probabilities are frequently referred to as cell
probabilities.  The k bins are also called cells.  The k
bin intervals do not overlap and they completely cover
the range of values of f0(x).  It follows that 'i

k
=1pi = 1.

The expected frequency of the ith bin, denoted ei, is ei

= npi, for i = 1, 2, ..., k.  The ei are commonly referred
to as the expected cell counts.  The observed frequen-
cies for each of the k bins, denoted Oi, are referred to as
observed cell counts.

The chi-square goodness-of-fit test compares the
observed frequencies to the corresponding expected
frequencies for each of the k groups by calculating the
test statistic:

.X
O e

e
i i

ii

k
2

2

1

=
−

=
∑ ( )

If the observations come from some distribution other
than that specified in the null hypothesis, the observed
frequencies tend to agree poorly with the expected
frequencies, and the computed test statistic, X2, be-
comes large.

The distribution of the quantity X2 can be approximated
by a chi-square distribution.  The parameter that speci-
fies the chi-square distribution is called the degrees of
freedom.  Its value depends on the number of unknown
parameters and how they are estimated.  When the null-
hypothesis distribution is completely specified, such as
normal with both : and F known, the degrees of free-
dom are k ! 1.  If, instead,  H0 specifies the form of the
distribution but not the parameters, the degrees of

freedom must be adjusted.  In the example, if and S2X
from the sample are used to estimate : and F2 when
testing the distribution, the degrees of freedom are
between k ! 1 and k ! 1 ! m, where m is the number of
estimated parameters, 2.  If the quantity X2 is greater
that the 1 ! " quantile of the P2(k ! 1) distribution, the
hypothesized probability  distribution is rejected.  If X2

is less than the 1 ! " quantile of the P2(k ! 1 ! m)
distribution, the data are concluded to be adequately
modeled by f0(x).

When the sample size is small, the P2 distribution still
applies as long as the expected frequencies are not too
small.  Larger expected cell counts make the chi-square
distribution approximation better.  The problem with
small expected frequencies is that a single random

observation falling in a group with a small expected
frequency would result in that single value having a
major contribution to the value of the test statistic, and
thus, the test itself.  In addition, small expected frequen-
cies are likely to occur only in extreme cases.  One rule
of thumb is that no expected frequency should be less
than 1 (see Snedecor and Cochran, 1989).  Two ex-
pected frequencies can be near 1 if most of the other
expected frequencies are greater than 5.  Groups with
expected frequencies below 1 should be combined or
the groups should be redefined to comply with this rule.
Note that k is the number of groups after such combina-
tion or redefinition.

Comparing how well sample data agree with an ex-
pected set of data leads to another common use of the
chi-square test:  testing whether two or more classifica-
tion criteria, used to group subjects or objects, are
independent of one another. Although not a goodness-
of-fit test, the chi-square test for independence is
similar to the chi-square goodness-of-fit test.

For two grouping criteria, the rows of a two-way
contingency table can represent the classes of one of
the criteria and the columns can represent the classes of
the other criterion.  To test the hypothesis that the rows
and columns represent independent classifications, the
expected number, eij, that would fall into each cell of
the two-way table is calculated and used to compute the
following chi-square test statistic:

,X
O E

E
ij ij

iji j

2
2

=
−

∑
( )

,

where i = 1, 2, ..., r (the number of rows); j = 1, 2, ..., c
(the number of columns); and Oij is the number ob-
served to belong to the ith row and jth column.  The eij

are calculated by

,e
R C

n
ij

i j=

where Ri and Cj are the total observed in the ith row and
jth column, respectively, and n is the total sample size
(n = 'Ri = 'Cj).

For this test, the P2 test statistic follows a chi-square
distribution with (r ! 1)(c ! 1) degrees of freedom.  If
the calculated X2 exceeds the 1 ! " quantile of the P2

distribution with (r ! 1)(c ! 1) degrees of freedom, the
null hypothesis of independence is rejected and the
rows and columns are concluded to not represent
independent classifications.



Basics of Statistics

B-10

Figure B.3  The hypothesized distribution, the empir-
ical distribution, and the Kolmogorov test statistic, D.

The Kolmogorov goodness-of-fit test tests the hypoth-
esis that the observed random variable has c.d.f. F0(x),
versus the alternative hypothesis that the observed
random variable does not have c.d.f. F0(x).  It does this
by comparing the sample c.d.f. (the empirical distribu-
tion function) to the hypothesized c.d.f.  For a random
sample of n observations, X1, X2, ..., Xn, the test statistic
is defined as the maximum vertical distance between the

empirical c.d.f.,  and F0(x).  The actual procedure$ ( )F x
for calculating the test statistic can be found in many
statistics texts, including Martz and Waller (1991) and
Conover (1999).  The test statistic is then compared to
the 1 ! " quantile of tabled values for the Kolmogorov
test, e.g. in Table C.  If the calculated test statistic
exceeds the 1 ! " quantile, the hypothesized c.d.f. is
rejected.  Otherwise, F0(x) is concluded to describe the
data.  The Kolmogorov goodness-of-fit test is based on
each individual data point and therefore is equally
effective for small or large samples.

As an example, consider the previous example of loss-
of-offsite-power recovery times.  Suppose that five
recovery times have been observed at the plant: 7, 22,
94, 185, and 220 minutes.  The corresponding values of
x = ln(recovery time in minutes) are 1.95, 3.09, 4.54,
5.22, and 5.39.  The null hypothesis and alternative
hypothesis are:

H0: X is normal with : = 3.388, F = 1.435 
H1: X has some other distribution .

Note, all possible alternative distributions are consid-
ered, not just normal distributions, or distributions with
F = 1.435.

Figure B.3 shows the distribution function specified by
H0 (the smooth curve) and the empirical distribution
function specified by the data (the step function).  The
maximum distance between the two distributions is D,
the Kolmogorov test statistic.  If D is large, the test
rejects H0 in favor of H1.

If the sample size is small, the Kolmogorov test may be
preferred over the chi-square test.  The Kolmogorov
test is exact, even for small samples, while the chi-
square test is an approximation that is better for larger
sample sizes.  The Kolmogorov statistic can also be
used to construct a confidence region for the unknown
distribution function.

The Kolmogorov goodness-of-fit test is sometimes
called the Kolmogorov-Smirnov one-sample test.
Statistics that are functions of the maximum vertical
distance between  and F0(x) are considered to be$ ( )F x

Kolmogorov-type statistics.  Statistics that are functions
of the maximum vertical distance between two empiri-
cal distribution functions are considered to be Smirnov-
type statistics.  A test of whether two samples have the
same distribution function is the Smirnov test, which is
a two-sample version of the Kolmogorov test presented
above.  This two-sample test is also called the
Kolmogorov-Smirnov two-sample test.  Conover
(1999) presents additional information and tests.

Another useful goodness-of-fit test is the Anderson-
Darling goodness-of-fit test and test for normality.  The
Anderson-Darling test measures the squared difference
between the empirical distribution function (EDF) of a
sample and the theoretical distribution to be tested.  It
averages this squared difference over the entire range of
the random variable, weighting the tails more heavily
than the center.  This statistic is recommended to guard
against wayward observations in the tail and has gener-
ally good power.  

Because many statistical methods require the assump-
tion of normality, some assessment of whether data
come from a normal population is helpful when consid-
ering appropriate analysis techniques.  The Anderson-
Darling statistic provides a measure of how much
normal probability scores for the data (normal probabil-
ity plot values) deviate from a straight line that would
arise under normality.  A computer package is often
used to calculate this statistic and compare it to tabled
values for the statistic.  If the calculated statistic is too
high, the deviations from the straight line are too large
to be attributed to the variation due to sampling obser-
vations from a normal distribution.  Thus, the hypothe-
sis of normality is rejected.  See Stephens (1982) for
more information on the Anderson-Darling goodness-
of-fit test.
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Certain patterns of deviations from linearity in normal
probability plots indicate common types of nonnormal
characteristics, such as skewness or kurtosis (presence
of long or short tails of the p.d.f.).  Test for skewness or
kurtosis are also available.  See Snedecor and Cochran
(1989) for more information on these tests.

B.5 Bayesian Estimation

B.5.1 Purpose and Use

Bayesian estimation is the other major class of statisti-
cal inference methods.  Similar to frequentist estima-
tion, both point and interval estimates can be obtained.
However, Bayesian estimation is different from classi-
cal estimation in both practical and philosophical
perspectives (NRC, 1994).  Bayesian estimation incor-
porates degree of belief and information beyond that
contained in the data sample, forming the practical
difference from classical estimation.  The subjective
interpretation of probability forms the philosophical
difference from frequentist methods.

The prior belief about a parameter’s value is contained
in what is referred to as the prior distribution, which
describes the state of knowledge (or subjective proba-
bility) about the parameter, prior to obtaining the data
sample.  Therefore, in the Bayesian approach, the
parameters of the sampling distribution have probability
distributions.  These probabilities do not model random
variability of the parameters, but the analyst’s degree of
belief about the true values of the unknown parameters.
The distributions are sometimes called “uncertainty
distributions.”  A Bayesian uncertainty distribution
satisfies all the rules of a probability distribution.

Bayesian estimation consists of two main areas, both of
which use the notion of subjective probability.  The first
area involves using available data to assign a subjective,
prior distribution to a parameter, such as a failure rate.
The degree of belief about the uncertainty in a parame-
ter value is expressed in the prior distribution.  This
assignment of a prior distribution does not involve the
use of Bayes’ Theorem.  The second area of Bayesian
estimation involves using additional or new data to
update an existing prior distribution.  This is called
Bayesian updating, and directly uses Bayes’ Theorem.

Bayes’ Theorem, presented in Section A.5, can be seen
to transform the prior distribution by the effect of the
sample data distribution to produce a posterior distri-
bution.  The sample data distribution, f(x*2), can be
viewed as a function of the unknown parameter, instead
of the observed data, xi, producing a likelihood func-

tion, as discussed in Section B.4.1.  Using the likeli-
hood function, the fundamental relationship expressed
by Bayes’ Theorem is

.Posterior Distribution
Prior Distribution  Likelihood

Marginal Distribution
=

×

The marginal distribution serves as a normalizing
constant.

In Bayesian updating, the sampling distribution of the
data provides new information about the parameter
value.  Bayes’ Theorem provides a mathematical
framework for processing new sample data as they
become sequentially available over time.  With the new
information, the uncertainty of the parameter value has
been reduced, but not eliminated.  Bayes’ Theorem is
used to combine the prior and sampling distributions to
form the posterior distribution, which then describes the
updated state of knowledge (still in terms of subjective
probability) about the parameter.  Point and interval
estimates of the parameter can then be obtained di-
rectly from the posterior distribution, which is viewed
as containing the current knowledge about the parame-
ter.  This posterior distribution can then be used as the
prior distribution when the next set of data becomes
available.  Thus, Bayesian updating is successively
implemented using additional data in conjunction with
Bayes’ Theorem to obtain successively better posterior
distributions that model plant-specific parameters.

Bayesian point and interval estimates are obtained from
both the prior and posterior distributions.  The interval
estimates are subjective probability intervals, or
credible intervals.  The terminology is not yet univer-
sally standard.  Berger (1985) and Bernardo and Smith
(2000) both use the term credible interval, but Box
and Tiao (1973) use Bayes probability interval,
Lindley (1965) uses Bayesian confidence interval, and
other authors have used other terms.  A credible interval
can be interpreted as a subjective probability statement
about the parameter value, unlike classical interval
estimates.  That is, the interpretation of a 95% Bayesian
posterior probability interval (a, b) is that, with 95%
subjective probability, the parameter is contained in the
interval (a, b), given the prior and sampling distribu-
tions.

B.5.2 Point and Interval Estimates

Bayesian parameter estimation involves four steps.  The
first step is identification of the parameter(s) to be
estimated, which involves consideration of the assumed
distribution of the data that will be collected.  The
second step is development of a prior distribution that
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appropriately quantifies the state of knowledge concern-
ing the unknown parameter(s).  The third step is collec-
tion of the data sample.  The fourth and final step is
combining the prior distribution with the data sample
using Bayes’ Theorem, to produce the desired posterior
distribution.

For PRA applications, determining the prior distribu-
tion is usually based on generic data and the data
sample usually involves site-specific or plant-specific
operating data.  The resulting posterior distribution
would then be the site-specific or plant-specific distri-
bution of the parameter.

The plant-specific data collected are assumed to be a
random sample from an assumed sampling distribution.
The data are used to update the prior, producing the
posterior distribution.  Point estimates, such as the most
likely value (the mode), the median, or (most com-
monly) the mean value, and probability interval esti-
mates of the parameter can then be obtained.  Other
bounds and other point values can also be obtained with
the Bayesian approach because the posterior parameter
distribution is entirely known and represents the avail-
able knowledge about the parameter.

Bayesian interval estimation is more direct than classi-
cal interval estimation and is based solely on the
posterior p.d.f..  A symmetric 100(1 ! ")% two-sided
Bayes probability interval estimate of the parameter
is easily obtained from the "/2 and 1 ! "/2 quantiles of
the posterior distribution.  Lower and upper one-sided
Bayes probability interval estimates can similarly be
calculated.  Again, note that the Bayes interval esti-
mates are explicit probability statements of the true
parameter being contained in the interval.

In some applications, such as a planned facility, plant-
specific data do not exist.  In these cases, Bayes’
Theorem is not used.  Only the generic data are used
and parameter estimates are based solely on the as-
sumed prior distribution.  Investigation of the sensitivity
of the results to the choice of the prior distribution is
important for these cases.

B.5.3 Prior Distributions

The prior distribution is fundamental to any Bayesian
analysis and represents all that is known or assumed
about the parameter 2 prior to collecting any data.  The
information summarized by the prior distribution can be
objective, subjective, or both.  Operational data and
data from a previous but comparable experiment could
be used as objective data.  Subjective information could
involve personal experience and opinions, expert

judgement, assessments of degree of belief, and design
information.

The selection of prior distributions can be seen to be
somewhat subjective.  A particular prior must be
evaluated to determine the sensitivity of the choice of
that prior on the parameter estimates.  Consistency of
the prior information and data with the prior distribu-
tion must be tested.

Choices for the initial prior distribution and techniques
for handling various kinds of data are described in
detail in several references, such as Martz and Waller
(1991), Raiffa and Schlaifer (1961), and Siu and Kelly
(1998) . 

B.5.3.1 Noninformative Prior Distributions

One class of prior distributions that is widely used is
termed noninformative priors, also referred to as
priors of ignorance, or reference priors (Bernardo and
Smith 1994).  These names refer to the situation where
very little a priori information about a parameter is
available in comparison to the information expected to
be provided by the data sample, or there is indifference
about the range of values the parameter could assume.

One might think that this indifference could be ex-
pressed by a prior distribution that is uniformly distrib-
uted over the interval of interest.  Every value in the
interval is equally likely and no knowledge about any
specific value over another value is imposed.

However, uniform distributions do not necessarily best
reflect true noninformativeness (Box and Tiao 1973),
because models can be parameterized in various ways.
For example, if the time to failure, T, is exponentially
distributed, it is common to write the density of T as

f t e t( ) = −λ λ

or alternatively as

.f t e
t

( )
/= −1

µ
µ

The two parameters are related by 8 = 1/:.

A uniform distribution cannot be said to automatically
reflect ignorance and be used as a standard
noninformative prior distribution.  For the exponential
example here, ignorance of 8 implies ignorance of :,
but 8 and : cannot both have a uniform distribution.  In
fact, suppose that 8 has the uniform distribution in
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some finite range, say from a to b.   Then : has a
density proportional to 1/:2 in the range from 1/b to
1/a, as stated in Appendix A.4.7.  The distribution of :
is not uniform.

Jeffreys’ rule (Jeffreys 1961) guides the choice of
noninformative prior distributions and  provides the
Jeffreys prior distribution (Box and Tiao, 1973). The
Jeffreys prior distribution is commonly used in PRA
and involves using a specific parameterization of the
model (distribution).  Jeffreys’ method is to transform
the model into a parameterization that is in terms of a
location parameter, a parameter that slides the distri-
bution sideways without changing its shape.  (See Box
and Tiao 1978, Secs. 1.2.3 and 1.3.4).  This method
then uses the uniform distribution as the noninformative
prior for the location parameter.  It is reasonable to
regard a uniform distribution as noninformative for a
location parameter.  The distribution for any other
parameterization is then determined, and is called
noninformative.

In the exponential example, working with log(time), let
2 = log(:), S = log(T), and s = log(t).  Using algebraic
formulas given in Section A.4.7 of Appendix A, it can
be shown that the density in this parameterization is

.f s s e s( ) exp( ) exp( )= − − −θ θ

Because 2 only appears in the expression s ! 2, a
change in 2 simply slides the distribution sideways
along the s axis.  Therefore, 2 is a location parameter.
The Jeffreys noninformative prior is a uniform distribu-
tion for 2.  This distribution translates to a density for
8 which is proportional to 1/8, and a density for :
which is proportional to 1/:.  These are the Jeffreys
noninformative prior distributions for 8 and :.

A further argument for Jeffreys prior distributions is
that the resulting Bayes intervals are numerically equal
to confidence intervals (Lindley 1958), and the confi-
dence intervals are based on the data alone, not on prior
belief.  Unfortunately, the above approach cannot be
followed exactly when the data come from a discrete
distribution, such as binomial or Poisson.  The original
parameter can only approximately be converted to a
location parameter.  The resulting distribution is still
called the Jeffreys prior, however, even though it only
approximates the Jeffreys method.

To avoid the appearance of pulling prior distributions
out of the air, the general formula for the Jeffreys prior
is stated here, as explained by Box and Tiao (1973) and
many others.  All the particular cases given in this

handbook can be found by working out the formula in
those cases.  Let 2 denote the unknown parameter to be
estimated.  Let L(2; x) denote the likelihood corre-
sponding to a single observation.  It is a function of 2,
but it also depends on the data, x.  For example, x is the
number of Poisson events in a single unit of time, or the
number of failures on a single demand, or the length of
a single duration.  Calculate

 .−
d

d
L x

2

2θ
θln[ ( ; )]

Now replace the number x by the random variable X,
and evaluate the expectation of the calculated deriva-
tive:

 .E
d

d
L X−

⎛
⎝
⎜

⎞
⎠
⎟

2

2θ
θln[ ( ; )]

The Jeffreys noninformative prior is a function of 2
proportional to the square root of this expectation.

B.5.3.2 Conjugate Prior Distributions

A conjugate prior distribution is a distribution that
results in a posterior distribution that is a member of the
same family of distributions as the prior.  Therefore,
conjugate prior distributions are computationally con-
venient.  The methodology for obtaining conjugate
priors is based on sufficient statistics and likelihood
functions (see Martz and Waller, 1991).

The beta family of distributions is the conjugate family
of prior distributions for the probability of failure of a
component in a binomial sampling situation.  The
resulting posterior beta distribution can then be used to
provide point and interval estimates of the failure
probability.

A time-to-failure random variable is often assumed to
follow an exponential distribution, with the failure
events arising from a Poisson process.  For this model,
with either exponential or Poisson data, the gamma
family of distributions is the conjugate family of prior
distributions for use in Bayesian reliability and failure
rate analyses.

Figure B.4 is a schematic diagram showing the relation
of the kinds of priors that have been mentioned so far.
There are many nonconjugate priors.  A relatively small
family of priors is conjugate, typically a single type
such as the gamma distributions or beta distributions.
Finally, the Jeffreys noninformative prior is a single
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All priors

Conjugate
priors

Jeffreys prior

Figure B.4  Schematic diagram of types of priors.

distribution, shown in the diagram by a dot.  In many
cases, the Jeffreys prior is also conjugate, as indicated
in the figure.

A popular nonconjugate prior is the lognormal distribu-
tion.  It can be used as a prior distribution for both the
binomial sampling and Poisson process models above,
although it is not conjugate.

Conjugate prior distributions provide convenience, but
accurate modeling of prior degree of belief should not
be sacrificed for mathematical convenience.  However,
when one expression of prior belief is viewed to be as
correct as another, the more convenient expression is
usually selected for use.

B.5.3.3 Other Prior Distribution Approaches

The prior distribution is the distribution of degree of
belief before data that provide new information are
obtained.  Usually, the prior probabilities do not have
a direct frequency interpretation and cannot be experi-
mentally confirmed.

When the prior distribution does have a frequency
interpretation, the observed data can be used to estimate
the prior distribution.  This situation represents another
class of methods of statistical inference called empiri-
cal Bayes methods.  The empirical Bayes prior distribu-
tion is empirically determined, for example, using
observed plant-specific data for a given set of plants.
Bayes’ Theorem can then be applied to combine this
prior with observed data from a specific plant to pro-
duce a posterior distribution.  Thus, empirical Bayes
methods are useful when data from similar, but not

identical, sources exist.  This situation also gives rise to
the use of so-called hierarchical Bayes methods (see
Gelman, et al., 1995, and Carlin and Louis, 1996).

Attempts have been made to remove some of the
subjectivity present in selecting prior distributions, with
the goal being to obtain one distribution for the same
given information.  That is, different analysts using the
same information would decide upon the same prior
distribution.  The result has been development of the
method of maximum entropy.  If 2 is a parameter
with uncertainty distribution g, the entropy is defined as

 .−∫ g g d( ) ln[ ( )]θ θ θ

The distribution g that maximizes this expression is
called the maximum entropy distribution.  For finite
ranges, the p.d.f. with the largest entropy is the uniform,
or flat, distribution.  Thus, entropy can be viewed as a
measure of the variability in the height of a p.d.f., and
a maximum entropy prior would be the one with the
required mean that is as flat as possible.  Siu and Kelly
(1998, Table 2) give the maximum entropy distributions
for a number of possible constraints.

Maximum entropy methods may see more use in the
future, but still do not produce a systematic approach to
selecting only one prior from a set of possible priors.
In fact, the same problem that the Jeffreys’ method
attempts to address (Section B.5.3.1) is present with the
maximum entropy approach: if a model is parame-
terized in two different ways, the maximum entropy
priors for the two parameters are inconsistent with each
other.

To address this lack of invariance, constrained
noninformative priors are obtained.  They are based
on the maximum entropy approach in conjunction with
Jeffreys’ method.  That parameterization is used for
which the parameter is a location parameter.  Giving
maximum entropy to this parameter produces a distribu-
tion called the constrained noninformative prior
distribution.  Atwood (1996) presents constrained non-
informative priors and their application to PRA.
Constrained noninformative prior distributions are
seeing use in PRA, although not as much as Jeffreys’
priors.

Other ways of defining noninformative prior distribu-
tions exist.  See Martz and Waller (1991) and Berger
(1985) for more information. 
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C.  STATISTICAL TABLES

Table C.1.  Standard normal cumulative distribution function, M.   

zΦ(z)

z M(z) z M(z) z M(z) z M(z)
-4.00
-3.50
-3.00
-2.99
-2.98
-2.97
-2.96
-2.95
-2.94
-2.93
-2.92
-2.91
-2.90
-2.89
-2.88
-2.87
-2.86
-2.85
-2.84
-2.83
-2.82
-2.81
-2.80
-2.79
-2.78
-2.77
-2.76
-2.75
-2.74
-2.73
-2.72
-2.71
-2.70
-2.69
-2.68
-2.67
-2.66
-2.65
-2.64
-2.63
-2.62
-2.61
-2.60
-2.59
-2.58
-2.57
-2.56
-2.55
-2.54
-2.53

3.2E-5
2.3E-4
0.0013
0.0014
0.0014
0.0015
0.0015
0.0016
0.0016
0.0017
0.0018
0.0018
0.0019
0.0019
0.0020
0.0021
0.0021
0.0022
0.0023
0.0023
0.0024
0.0025
0.0026
0.0026
0.0027
0.0028
0.0029
0.0030
0.0031
0.0032
0.0033
0.0034
0.0035
0.0036
0.0037
0.0038
0.0039
0.0040
0.0041
0.0043
0.0044
0.0045
0.0047
0.0048
0.0049
0.0051
0.0052
0.0054
0.0055
0.0057

-2.52
-2.51
-2.50
-2.49
-2.48
-2.47
-2.46
-2.45
-2.44
-2.43
-2.42
-2.41
-2.40
-2.39
-2.38
-2.37
-2.36
-2.35
-2.34
-2.33
-2.32
-2.31
-2.30
-2.29
-2.28
-2.27
-2.26
-2.25
-2.24
-2.23
-2.22
-2.21
-2.20
-2.19
-2.18
-2.17
-2.16
-2.15
-2.14
-2.13
-2.12
-2.11
-2.10
-2.09
-2.08
-2.07
-2.06
-2.05
-2.04
-2.03

0.0059
0.0060
0.0062
0.0064
0.0066
0.0068
0.0069
0.0071
0.0073
0.0075
0.0078
0.0080
0.0082
0.0084
0.0087
0.0089
0.0091
0.0094
0.0096
0.0099
0.0102
0.0104
0.0107
0.0110
0.0113
0.0116
0.0119
0.0122
0.0125
0.0129
0.0132
0.0136
0.0139
0.0143
0.0146
0.0150
0.0154
0.0158
0.0162
0.0166
0.0170
0.0174
0.0179
0.0183
0.0188
0.0192
0.0197
0.0202
0.0207
0.0212

-2.02
-2.01
-2.00
-1.99
-1.98
-1.97
-1.96
-1.95
-1.94
-1.93
-1.92
-1.91
-1.90
-1.89
-1.88
-1.87
-1.86
-1.85
-1.84
-1.83
-1.82
-1.81
-1.80
-1.79
-1.78
-1.77
-1.76
-1.75
-1.74
-1.73
-1.72
-1.71
-1.70
-1.69
-1.68
-1.67
-1.66
-1.65
-1.64
-1.63
-1.62
-1.61
-1.60
-1.59
-1.58
-1.57
-1.56
-1.55
-1.54
-1.53

0.0217
0.0222
0.0228
0.0233
0.0239
0.0244
0.0250
0.0256
0.0262
0.0268
0.0274
0.0281
0.0287
0.0294
0.0301
0.0307
0.0314
0.0322
0.0329
0.0336
0.0344
0.0351
0.0359
0.0367
0.0375
0.0384
0.0392
0.0401
0.0409
0.0418
0.0427
0.0436
0.0446
0.0455
0.0465
0.0475
0.0485
0.0495
0.0505
0.0516
0.0526
0.0537
0.0548
0.0559
0.0571
0.0582
0.0594
0.0606
0.0618
0.0630

-1.52
-1.51
-1.50
-1.49
-1.48
-1.47
-1.46
-1.45
-1.44
-1.43
-1.42
-1.41
-1.40
-1.39
-1.38
-1.37
-1.36
-1.35
-1.34
-1.33
-1.32
-1.31
-1.30
-1.29
-1.28
-1.27
-1.26
-1.25
-1.24
-1.23
-1.22
-1.21
-1.20
-1.19
-1.18
-1.17
-1.16
-1.15
-1.14
-1.13
-1.12
-1.11
-1.10
-1.09
-1.08
-1.07
-1.06
-1.05
-1.04
-1.03

0.0643
0.0655
0.0668
0.0681
0.0694
0.0708
0.0721
0.0735
0.0749
0.0764
0.0778
0.0793
0.0808
0.0823
0.0838
0.0853
0.0869
0.0885
0.0901
0.0918
0.0934
0.0951
0.0968
0.0985
0.1003
0.1020
0.1038
0.1056
0.1075
0.1093
0.1112
0.1131
0.1151
0.1170
0.1190
0.1210
0.1230
0.1251
0.1271
0.1292
0.1314
0.1335
0.1357
0.1379
0.1401
0.1423
0.1446
0.1469
0.1492
0.1515
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Table C.1  Standard normal cumulative distribution function, M (continued).

z M(z) z M(z) z M(z) z M(z)
-1.02
-1.01
-1.00
-0.99
-0.98
-0.97
-0.96
-0.95
-0.94
-0.93
-0.92
-0.91
-0.90
-0.89
-0.88
-0.87
-0.86
-0.85
-0.84
-0.83
-0.82
-0.81
-0.80
-0.79
-0.78
-0.77
-0.76
-0.75
-0.74
-0.73
-0.72
-0.71
-0.70
-0.69
-0.68
-0.67
-0.66
-0.65
-0.64
-0.63
-0.62
-0.61
-0.60
-0.59
-0.58
-0.57
-0.56
-0.55
-0.54
-0.53
-0.52

0.1539
0.1562
0.1587
0.1611
0.1635
0.1660
0.1685
0.1711
0.1736
0.1762
0.1788
0.1814
0.1841
0.1867
0.1894
0.1922
0.1949
0.1977
0.2005
0.2033
0.2061
0.2090
0.2119
0.2148
0.2177
0.2206
0.2236
0.2266
0.2296
0.2327
0.2358
0.2389
0.2420
0.2451
0.2483
0.2514
0.2546
0.2578
0.2611
0.2643
0.2676
0.2709
0.2743
0.2776
0.2810
0.2843
0.2877
0.2912
0.2946
0.2981
0.3015

-0.51
-0.50
-0.49
-0.48
-0.47
-0.46
-0.45
-0.44
-0.43
-0.42
-0.41
-0.40
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
-0.29
-0.28
-0.27
-0.26
-0.25
-0.24
-0.23
-0.22
-0.21
-0.20
-0.19
-0.18
-0.17
-0.16
-0.15
-0.14
-0.13
-0.12
-0.11
-0.10
-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

0.3050
0.3085
0.3121
0.3156
0.3192
0.3228
0.3264
0.3300
0.3336
0.3372
0.3409
0.3446
0.3483
0.3520
0.3557
0.3594
0.3632
0.3669
0.3707
0.3745
0.3783
0.3821
0.3859
0.3897
0.3936
0.3974
0.4013
0.4052
0.4090
0.4129
0.4168
0.4207
0.4247
0.4286
0.4325
0.4364
0.4404
0.4443
0.4483
0.4522
0.4562
0.4602
0.4641
0.4681
0.4721
0.4761
0.4801
0.4840
0.4880
0.4920
0.4960

 0.00
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.10
 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17
 0.18
 0.19
 0.20
 0.21
 0.22
 0.23
 0.24
 0.25
 0.26
 0.27
 0.28
 0.29
 0.30
 0.31
 0.32
 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39
 0.40
 0.41
 0.42
 0.43
 0.44
 0.45
 0.46
 0.47
 0.48
 0.49
 0.50

0.5000
0.5040
0.5080
0.5120
0.5160
0.5199
0.5239
0.5279
0.5319
0.5359
0.5398
0.5438
0.5478
0.5517
0.5557
0.5596
0.5636
0.5675
0.5714
0.5753
0.5793
0.5832
0.5871
0.5910
0.5948
0.5987
0.6026
0.6064
0.6103
0.6141
0.6179
0.6217
0.6255
0.6293
0.6331
0.6368
0.6406
0.6443
0.6480
0.6517
0.6554
0.6591
0.6628
0.6664
0.6700
0.6736
0.6772
0.6808
0.6844
0.6879
0.6915

 0.51
 0.52
 0.53
 0.54
 0.55
 0.56
 0.57
 0.58
 0.59
 0.60
 0.61
 0.62
 0.63
 0.64
 0.65
 0.66
 0.67
 0.68
 0.69
0.70
 0.71
 0.72
 0.73
 0.74
 0.75
 0.76
 0.77
 0.78
 0.79
 0.80
 0.81
 0.82
 0.83
 0.84
 0.85
 0.86
 0.87
 0.88
 0.89
 0.90
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99
 1.00
 1.01

0.6950
0.6985
0.7019
0.7054
0.7088
0.7123
0.7157
0.7190
0.7224
0.7257
0.7291
0.7324
0.7357
0.7389
0.7422
0.7454
0.7486
0.7517
0.7549
0.7580
0.7611
0.7642
0.7673
0.7703
0.7734
0.7764
0.7794
0.7823
0.7852
0.7881
0.7910
0.7939
0.7967
0.7995
0.8023
0.8051
0.8078
0.8106
0.8133
0.8159
0.8186
0.8212
0.8238
0.8264
0.8289
0.8315
0.8340
0.8365
0.8389
0.8413
0.8438
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Table C.1  Standard normal cumulative distribution function, M (continued).

z M(z) z M(z) z M(z) z M(z)
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09
 1.10
 1.11
 1.12
 1.13
 1.14
 1.15
 1.16
 1.17
 1.18
 1.19
 1.20
 1.21
 1.22
 1.23
 1.24
 1.25
 1.26
 1.27
 1.28
 1.29
 1.30
 1.31
 1.32
 1.33
 1.34
 1.35
 1.36
 1.37
 1.38
 1.39
 1.40
 1.41
 1.42
 1.43
 1.44
 1.45
 1.46
 1.47
 1.48
 1.49
1.50
1.51

0.8461
0.8485
0.8508
0.8531
0.8554
0.8577
0.8599
0.8621
0.8643
0.8665
0.8686
0.8708
0.8729
0.8749
0.8770
0.8790
0.8810
0.8830
0.8849
0.8869
0.8888
0.8907
0.8925
0.8944
0.8962
0.8980
0.8997
0.9015
0.9032
0.9049
0.9066
0.9082
0.9099
0.9115
0.9131
0.9147
0.9162
0.9177
0.9192
0.9207
0.9222
0.9236
0.9251
0.9265
0.9279
0.9292
0.9306
0.9319
0.9332
0.9345

  1.52
 1.53
 1.54
 1.55
 1.56
 1.57
 1.58
 1.59
 1.60
 1.61
 1.62
 1.63
 1.64
 1.65
 1.66
 1.67
 1.68
 1.69
 1.70
 1.71
 1.72
 1.73
 1.74
 1.75
 1.76
 1.77
 1.78
 1.79
 1.80
 1.81
 1.82
 1.83
 1.84
 1.85
 1.86
 1.87
 1.88
 1.89
 1.90
 1.91
 1.92
 1.93
 1.94
 1.95
 1.96
 1.97
 1.98
 1.99
2.00
2.01

0.9357
0.9370
0.9382
0.9394
0.9406
0.9418
0.9429
0.9441
0.9452
0.9463
0.9474
0.9484
0.9495
0.9505
0.9515
0.9525
0.9535
0.9545
0.9554
0.9564
0.9573
0.9582
0.9591
0.9599
0.9608
0.9616
0.9625
0.9633
0.9641
0.9649
0.9656
0.9664
0.9671
0.9678
0.9686
0.9693
0.9699
0.9706
0.9713
0.9719
0.9726
0.9732
0.9738
0.9744
0.9750
0.9756
0.9761
0.9767
0.9772
0.9778

 2.02
 2.03
 2.04
 2.05
 2.06
 2.07
 2.08
 2.09
 2.10
 2.11
 2.12
 2.13
 2.14
 2.15
 2.16
 2.17
 2.18
 2.19
 2.20
 2.21
 2.22
 2.23
 2.24
 2.25
 2.26
 2.27
 2.28
 2.29
 2.30
 2.31
 2.32
 2.33
 2.34
 2.35
 2.36
 2.37
 2.38
 2.39
 2.40
 2.41
 2.42
 2.43
 2.44
 2.45
 2.46
 2.47
 2.48
 2.49
2.50
2.51

0.9783
0.9788
0.9793
0.9798
0.9803
0.9808
0.9812
0.9817
0.9821
0.9826
0.9830
0.9834
0.9838
0.9842
0.9846
0.9850
0.9854
0.9857
0.9861
0.9864
0.9868
0.9871
0.9875
0.9878
0.9881
0.9884
0.9887
0.9890
0.9893
0.9896
0.9898
0.9901
0.9904
0.9906
0.9909
0.9911
0.9913
0.9916
0.9918
0.9920
0.9922
0.9925
0.9927
0.9929
0.9931
0.9932
0.9934
0.9936
0.9938
0.9940

2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
 2.72
 2.73
 2.74
 2.75
 2.76
 2.77
 2.78
 2.79
 2.80
 2.81
 2.82
 2.83
 2.84
 2.85
 2.86
 2.87
 2.88
 2.89
 2.90
 2.91
 2.92
 2.93
 2.94
 2.95
 2.96
 2.97
 2.98
 2.99
 3.00
 3.50
 4.00

0.9941
0.9943
0.9945
0.9946
0.9948
0.9949
0.9951
0.9952
0.9953
0.9955
0.9956
0.9957
0.9959
0.9960
0.9961
0.9962
0.9963
0.9964
0.9965
0.9966
0.9967
0.9968
0.9969
0.9970
0.9971
0.9972
0.9973
0.9974
0.9974
0.9975
0.9976
0.9977
0.9977
0.9978
0.9979
0.9979
0.9980
0.9981
0.9981
0.9982
0.9982
0.9983
0.9984
0.9984
0.9985
0.9985
0.9986
0.9986
0.9987
0.99977
0.999968
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Table C.2.  Percentiles of the chi-squared distribution.
χ2

q
q

Deg. of
freedom

P2
0.005 P2

0.01 P2
0.025 P2

0.05 P2
0.10 P2

0.20 P2
0.30 P2

0.40

0.25
0.5
1
2
3
4
5
6
7
8
9

4.8E-19
8.4E-10
3.93E-5
0.0100
0.0717
0.207
0.412
0.676
0.989
1.344
1.735

1.2E-16
1.35E-8
1.57E-4
0.0201
0.115
0.297
0.554
0.872
1.239
1.646
2.088

1.9E-13
5.27E-7
9.82E-4
0.0506
0.216
0.484
0.831
1.237
1.690
2.180
2.700

4.8E-11
8.44E-6
3.93E-3
0.103
0.352
0.711
1.145
1.635
2.167
2.733
3.325

1.24E-8
1.35E-4
0.0158
0.211
0.584
1.064
1.610
2.204
2.833
3.490
4.168

3.17E-6
2.16E-3
0.0642
0.446
1.005
1.649
2.343
3.070
3.822
4.594
5.380

8.12E-5
0.0110
0.148
0.713
1.424
2.195
3.000
3.828
4.671
5.527
6.393

8.11E-4
0.0350
0.275
1.022
1.869
2.753
3.655
4.570
5.493
6.423
7.357

10
11
12
13
14
15
16
17
18
19

2.156
2.603
3.074
3.565
4.075
4.601
5.142
5.697
6.265
6.844

2.558
3.053
3.571
4.107
4.660
5.229
5.812
6.408
7.015
7.633

3.247
3.816
4.404
5.009
5.629
6.262
6.908
7.564
8.231
8.907

3.940
4.575
5.226
5.892
6.571
7.261
7.962
8.672
9.390
10.12

4.865
5.578
6.304
7.042
7.790
8.547
9.312
10.09
10.86
11.65

6.179
6.989
7.807
8.634
9.467
10.31
11.15
12.00
12.86
13.72

7.267
8.148
9.034
9.926
10.82
11.72
12.62
13.53
14.44
15.35

8.295
9.237
10.18
11.13
12.08
13.03
13.98
14.94
15.89
16.85

20
21
22
23
24
25
26
27
28
29

7.434
8.034
8.643
9.260
9.886
10.52
11.16
11.81
12.46
13.12

8.260
8.897
9.542
10.20
10.86
11.52
12.20
12.88
13.56
14.26

9.591
10.28
10.98
11.69
12.40
13.12
13.84
14.57
15.31
16.05

10.85
11.59
12.34
13.09
13.85
14.61
15.38
16.15
16.93
17.71

12.44
13.24
14.04
14.85
15.66
16.47
17.29
18.11
18.94
19.77

14.58
15.44
16.31
17.19
18.06
18.94
19.82
20.70
21.59
22.48

16.27
17.18
18.10
19.02
19.94
20.87
21.79
22.72
23.65
24.58

17.81
18.77
19.73
20.69
21.65
22.62
23.58
24.54
25.51
26.48

30
35
40
45
50
55
60
70

13.79
17.19
20.71
24.31
27.99
31.73
35.53
43.25

14.95
18.51
22.16
25.90
29.71
33.57
37.48
45.42

16.79
20.57
24.43
28.37
32.36
36.40
40.48
48.75

18.49
22.47
26.51
30.61
34.76
38.96
43.19
51.74

20.60
24.80
29.05
33.35
37.69
42.06
46.46
55.33

23.36
27.84
32.34
36.88
41.45
46.04
50.64
59.90

25.51
30.18
34.87
39.58
44.31
49.06
53.81
63.35

27.44
32.28
37.13
42.00
46.86
51.74
56.62
66.40

80
90

100
125
150

51.14
59.17
67.30
88.01
109.1

53.52
61.74
70.05
91.17
112.7

57.15
65.64
74.22
95.94
118.0

60.39
69.13
77.93
100.2
122.7

64.28
73.29
82.36
105.2
128.3

69.21
78.56
87.95
111.5
135.3

72.92
82.52
92.13
116.3
140.5

76.19
85.60
95.81
120.4
145.0

For large degrees of freedom d, use , where zp is the corresponding percentile of a standard normal( )χ p pz d2
2

2 1 2≈ + − /

distribution.
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Table C.2  Percentiles of the chi-squared distribution (continued).

P2
0.50 P2

0.60 P2
0.70 P2

0.80 P2
0.90 P2

0.95 P2
0.975 P2

0.99 P2
0.995

Deg. of
freedom

4.84E-3
0.0873
0.455
1.386
2.366
3.357
4.351
5.348
6.346
7.344
8.343

0.0210
0.188
0.708
1.833
2.946
4.045
5.132
6.211
7.283
8.351
9.414

0.0737
0.375
1.074
2.408
3.665
4.878
6.064
7.231
8.383
9.524
10.66

0.229
0.726
1.642
3.219
4.642
5.989
7.289
8.558
9.803
11.03
12.24

0.716
1.501
2.706
4.605
6.251
7.779
9.236
10.64
12.02
13.36
14.68

1.419
2.420
3.841
5.991
7.815
9.488
11.07
12.59
14.07
15.51
16.92

2.269
3.433
5.024
7.378
9.348
11.14
12.83
14.45
16.01
17.53
19.02

3.543
4.868
6.635
9.210
11.34
13.28
15.09
16.81
18.48
20.09
21.67

4.585
6.004
7.879
10.56
12.84
14.86
16.75
18.55
20.28
21.95
23.59

0.25
0.5
1
2
3
4
5
6
7
8
9

9.342
10.34
11.34
12.34
13.34
14.34
15.34
16.34
17.34
18.34

10.47
11.53
12.58
13.64
14.69
15.73
16.78
17.82
18.87
19.91

11.78
12.90
14.01
15.12
16.22
17.32
18.42
19.51
20.60
21.69

13.44
14.63
15.81
16.98
18.15
19.31
20.47
21.61
22.76
23.90

15.99
17.28
18.55
19.81
21.06
22.31
23.54
24.77
25.99
27.20

18.31
19.68
21.03
22.36
23.68
25.00
26.30
27.59
28.87
30.14

20.48
21.92
23.34
24.74
26.12
27.49
28.85
30.19
31.53
32.85

23.21
24.72
26.22
27.69
29.14
30.58
32.00
33.41
34.81
36.19

25.19
26.76
28.30
29.82
31.32
32.80
34.27
35.72
37.16
38.58

10
11
12
13
14
15
16
17
18
19

19.34
20.34
21.34
22.34
23.34
24.34
25.34
26.34
27.34
28.34

20.95
21.99
23.03
24.07
25.11
26.14
27.18
28.21
29.25
30.28

22.77
23.86
24.94
26.02
27.10
28.17
29.25
30.32
31.39
32.46

25.04
26.17
27.30
28.43
29.55
30.68
31.79
32.91
34.03
35.14

28.41
29.62
30.81
32.01
33.20
34.38
35.56
36.74
37.92
39.09

31.41
32.67
33.92
35.17
36.42
37.65
38.89
40.11
41.34
42.56

34.17
35.48
36.78
38.08
39.36
40.65
41.92
43.19
44.46
45.72

37.57
38.93
40.29
41.64
42.98
44.31
45.64
46.96
48.28
49.59

40.00
41.40
42.80
44.18
45.56
46.93
48.29
49.64
50.99
52.34

20
21
22
23
24
25
26
27
28
29

29.34
34.34
39.34
44.34
49.33
54.33
59.33
69.34

31.32
36.47
41.62
46.76
51.89
57.02
62.13
72.36

33.53
38.86
44.16
49.45
54.72
59.98
65.23
75.69

36.25
41.78
47.27
52.73
58.16
63.58
68.97
79.71

40.26
46.06
51.81
57.51
63.17
68.80
74.40
85.52

43.77
49.80
55.76
61.66
67.50
 73.31
79.08
90.53

46.98
53.20
59.34
65.41
71.42
77.38
83.30
95.03

50.89
57.34
63.69
69.96
76.15
 82.29
88.38
100.4

53.67
60.27
66.77
73.17
79.49
85.75
91.95
104.2

30
35
40
45
50
55
60
70

79.34
89.33
99.33
124.3
149.3

82.56
92.76
102.9
128.4
153.8

86.12
96.52
106.9
132.8
158.6

90.40
101.0
111.7
138.1
164.3

96.57
107.6
118.5
145.6
172.6

101.9
113.1
124.3
152.1
179.6

106.6
118.1
129.6
157.8
185.8

112.3
124.1
135.8
164.7
193.2

116.3
128.3
140.2
169.5
198.4

80
90

100
125
150
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Table C.3.  Percentiles of Student's t distribution.      
tq

q

Deg. of
freedom

t0.6 t0.7 t0.8 t0.90 t0.95 t0.975 t0.99 t0.995

    1
    2
    3
    4
    5
    6
    7
    8
    9
  10

0.325
0.289
0.277
0.271
0.267
0.265
0.263
0.262
0.261
0.260

0.727
0.617
0.584
0.569
0.559
0.553
0.549
0.546
0.543
0.542

1.376
1.061
0.978
0.941
0.920
0.906
0.896
0.889
0.883
0.879

3.078
1.886
1.638
1.533
1.476
1.440
1.415
1.397
1.383
1.372

6.314
2.920
2.353
2.132
2.015
1.943
1.895
1.860
1.833
1.812

12.71
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228

31.82
6.965
4.541
3.747
3.365
3.143
2.998
2.896
2.821
2.764

63.66
9.925
5.841
4.604
4.032
3.707
3.499
3.355
3.250
3.169

  11
  12
  13
  14
  15
  16
  17
  18
  19
  20

0.260
0.259
0.259
0.258
0.258
0.258
0.257
0.257
0.257
0.257

0.540
0.539
0.538
0.537
0.536
0.535
0.534
0.534
0.533
0.533

0.876
0.873
0.870
0.868
0.866
0.865
0.863
0.862
0.861
0.860

1.363
1.356
1.350
1.345
1.341
1.337
1.333
1.330
1.328
1.325

1.796
1.782
1.771
1.761
1.753
1.746
1.740
1.734
1.729
1.725

2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086

2.718
2.681
2.650
2.624
2.602
2.583
2.567
2.552
2.539
2.528

3.106
3.055
3.012
2.977
2.947
2.921
2.898
2.878
2.861
2.845

  21
  22
  23
  24
  25
  26
  27
  28
  29
  30

0.257
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.256

0.532
0.532
0.532
0.531
0.531
0.531
0.531
0.530
0.530
0.530

0.859
0.858
0.858
0.857
0.856
0.856
0.855
0.855
0.854
0.854

1.323
1.321
1.319
1.318
1.316
1.315
1.314
1.313
1.311
1.310

1.721
1.717
1.714
1.711
1.708
1.706
1.703
1.701
1.699
1.697

2.080
2.074
2.069
2.064
2.060
2.056
2.052
2.048
2.045
2.042

2.518
2.508
2.500
2.492
2.485
2.479
2.473
2.467
2.462
2.457

2.831
2.819
2.807
2.797
2.787
2.779
2.771
2.763
2.756
2.750

  40
  50
  60
  70
  80
  90
100
120
150
4

0.255
0.255
0.254
0.254
0.254
0.254
0.254
0.254
0.254
0.253

0.529
0.528
0.527
0.527
0.526
0.526
0.526
0.526
0.526
0.524

0.851
0.849
0.848
0.847
0.846
0.846
0.845
0.845
0.844
0.842

1.303
1.299
1.296
1.294
1.292
1.291
1.290
1.289
1.287
1.282

1.684
1.676
1.671
1.667
1.664
1.662
1.660
1.658
1.655
1.645

2.021
2.009
2.000
1.994
1.990
1.987
1.984
1.980
1.976
1.960

2.423
2.403
2.390
2.381
2.374
2.368
2.364
2.358
2.351
2.326

2.704
2.678
2.660
2.648
2.639
2.632
2.626
2.617
2.609
2.576

For percentiles below the 50th, use the fact that the t distribution is symmetrical about zero, so t 1!q = !t q .
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Tables of the beta(", $) distribution are given on the
next pages.  Because of the limited size of the paper,
each table has been split into two pieces and printed on
two facing pages.  Each table contains a diagonal line,
shown by blackened cells.  The table entries below this
line and to the left are the lower percentiles, such as the
10th or the 5th.  The table entries above the diagonal
and to the right are the upper percentiles, such as the
90th or the 95th.  In this way, both sets of percentiles
appear in a single table.

Only distributions with " < $ are tabulated.  These
distributions have probability concentrated near zero,
and are the distributions usually encountered in PRA
work.  For distributions with " > $, use the fact that if
X has a beta(", $) distribution then 1 ! X has a beta($,

") distribution.  An example is given as a footnote to
each table.

The size of the page limits the number of parameter
pairs (", $) that can be tabulated.  Therefore, interpola-
tion is often necessary, which may give only rough
accuracy.  If greater accuracy is required, the user can
find the beta distribution calculated by many commonly
used computer packages and spreadsheets.  Similarly,
extrapolation beyond the table may sometimes be
necessary.  A footnote to each table gives an approxi-
mate extrapolation formula when $ >> ", and an
example of its application.  If greater accuracy is
needed, use a commercially available computer
program.
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Table C.4.  90th and 10th percentiles of beta (", $) distribution.
$ for 90th percentiles

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.00E+0 7.33E-1 3.49E-1 2.16E-1 1.55E-1 1.20E-1 9.84E-2 8.31E-2 7.20E-2 6.34E-2 5.67E-2 0.1 

"
for
90th
%iles

0.00   E+0 9.76E-1 8.10E-1 6.49E-1 5.32E-1 4.48E-1 3.86E-1 3.39E-1 3.02E-1 2.72E-1 2.47E-1 0.5 

$
for
10th
%iles

0.1 8.87E-8 0.00   + 9.00E-1 7.85E-1 6.84E-1 6.02E-1 5.36E-1 4.82E-1 4.38E-1 4.01E-1 3.69E-1 1.0 
0.5 3.46E-10 2.45E-2 0.0 0  E 8.44E-1 7.59E-1 6.85E-1 6.22E-1 5.68E-1 5.23E-1 4.84E-1 4.50E-1 1.5 
1.0 1.00E-10 1.00E-2 1.00E-1 0.00 +0 8.04E-1 7.38E-1 6.80E-1 6.28E-1 5.84E-1 5.45E-1 5.10E-1 2.0 
1.5 5.60E-11 6.18E-3 6.78E-2 1.56E-1 0. 0  00 7.75E-1 7.21E-1 6.73E-1 6.30E-1 5.92E-1 5.58E-1 2.5 
2.0 3.86E-11 4.46E-3 5.13E-2 1.23E-1 1.96E-1 0.0 0+0 7.53E-1 7.08E-1 6.67E-1 6.30E-1 5.96E-1 3.0 
2.5 2.93E-11 3.48E-3 4.13E-2 1.02E-1 1.65E-1 2.25E-1 0.0 0+0 7.36E-1 6.97E-1 6.61E-1 6.28E-1 3.5 
3.0 2.37E-11 2.86E-3 3.45E-2 8.64E-2 1.43E-1 1.97E-1 2.47E-1 0.0 0+0 7.21E-1 6.87E-1 6.55E-1 4.0 
3.5 1.98E-11 2.42E-3 2.97E-2 7.53E-2 1.26E-1 1.75E-1 2.21E-1 2.64E-1 0.00 E0 7.09E-1 6.79E-1 4.5 
4.0 1.71E-11 2.10E-3 2.60E-2 6.66E-2 1.12E-1 1.58E-1 2.01E-1 2.41E-1 2.79E-1 0.   0E0 6.99E-1 5.0 
4.5 1.50E-11 1.85E-3 2.31E-2 5.98E-2 1.01E-1 1.43E-1 1.84E-1 2.22E-1 2.58E-1 2.91E-1 0.0  +0
5. 1.33E-11 1.66E-3 2.09E-2 5.42E-2 9.26E-2 1.32E-1 1.70E-1 2.06E-1 2.40E-1 2.71E-1 3.01E-1
6. 1.09E-11 1.37E-3 1.74E-2 4.57E-2 7.88E-2 1.13E-1 1.47E-1 1.79E-1 2.10E-1 2.40E-1 2.67E-1
7. 9.26E-12 1.17E-3 1.49E-2 3.95E-2 6.86E-2 9.91E-2 1.29E-1 1.59E-1 1.88E-1 2.15E-1 2.41E-1
8. 8.04E-12 1.02E-3 1.31E-2 3.48E-2 6.08E-2 8.82E-2 1.16E-1 1.43E-1 1.69E-1 1.95E-1 2.19E-1
9. 7.10E-12 9.02E-4 1.16E-2 3.11E-2 5.45E-2 7.95E-2 1.05E-1 1.30E-1 1.54E-1 1.78E-1 2.01E-1
10. 6.36E-12 8.09E-4 1.05E-2 2.81E-2 4.95E-2 7.23E-2 9.57E-2 1.19E-1 1.42E-1 1.64E-1 1.85E-1
12.5 5.04E-12 6.44E-4 8.39E-3 2.27E-2 4.01E-2 5.90E-2 7.86E-2 9.82E-2 1.18E-1 1.37E-1 1.55E-1
15. 4.17E-12 5.35E-4 7.00E-3 1.90E-2 3.37E-2 4.99E-2 6.67E-2 8.37E-2 1.01E-1 1.17E-1 1.34E-1
20. 3.11E-12 4.00E-4 5.25E-3 1.43E-2 2.56E-2 3.81E-2 5.12E-2 6.46E-2 7.81E-2 9.16E-2 1.05E-1
30. 2.06E-12 2.65E-4 3.51E-3 9.61E-3 1.73E-2 2.59E-2 3.49E-2 4.43E-2 5.39E-2 6.36E-2 7.33E-2
50. 1.23E-12 1.59E-4 2.10E-3 5.80E-3 1.05E-2 1.57E-2 2.14E-2 2.73E-2 3.33E-2 3.95E-2 4.57E-2
100. 6.10E-13 7.91E-5 1.05E-3 2.91E-3 5.28E-3 7.96E-3 1.09E-2 1.39E-2 1.70E-2 2.03E-2 2.36E-2
   0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

" for 10th percentiles
For example, the 10th percentile of a beta(1.5, 10) distribution is 2.81E!2.  The 90th percentile of the same distribution (from the table continuation on the next page)
is 2.63E!1.  If X has a beta(", $) distributions with " > $, use the relation X = 1 ! Y, where Y has a beta($, ") distribution.  Thus, for example, the 10th and 90th
percentiles of a beta(10, 1.5) distribution are 1 ! 2.63E!1 = 0.737 and 1 ! 2.81E!2 = 0.9719, respectively.

For a beta(", $) distribution with $ >> ", the p quantile is approximated by .  For example, the 10th percentile of a beta(2,100)χ α β χ αp p
2 22 2 2( ) / [ ( )]+

distribution, shown above as 5.28E!3, is approximated by  = 1.064/201.064 = 5.29E!3.  The 90th percentile, 3.80E!2, is approximatedχ χ0 10
2

0 10
24 200 4. .( ) / [ ( )]+

by 7.770/207.779 = 3.74E!2.
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Table C.4  90th and 10th percentiles of beta (", $) distribution (continued).

$ for 90th percentiles
6. 7. 8. 9. 10. 12.5 15. 20. 30. 50. 100.

4.67E-2 3.98E-2 3.46E-2 3.06E-2 2.75E-2 2.18E-2 1.81E-2 1.35E-2 8.97E-3 5.36E-3 2.67E-3 0.1

"
for
90th
%iles

2.09E-1 1.81E-1 1.60E-1 1.43E-1 1.29E-1 1.05E-1 8.76E-2 6.62E-2 4.45E-2 2.68E-2 1.35E-2 0.5
3.19E-1 2.80E-1 2.50E-1 2.26E-1 2.06E-1 1.68E-1 1.42E-1 1.09E-1 7.39E-2 4.50E-2 2.28E-2 1.0
3.94E-1 3.51E-1 3.16E-1 2.87E-1 2.63E-1 2.18E-1 1.85E-1 1.43E-1 9.82E-2 6.03E-2 3.07E-2 1.5
4.53E-1 4.06E-1 3.68E-1 3.37E-1 3.10E-1 2.59E-1 2.22E-1 1.73E-1 1.20E-1 7.41E-2 3.80E-2 2.0
4.99E-1 4.52E-1 4.12E-1 3.79E-1 3.50E-1 2.95E-1 2.55E-1 2.00E-1 1.40E-1 8.70E-2 4.48E-2 2.5
5.38E-1 4.90E-1 4.50E-1 4.15E-1 3.86E-1 3.27E-1 2.84E-1 2.24E-1 1.58E-1 9.91E-2 5.13E-2 3.0
5.71E-1 5.23E-1 4.82E-1 4.47E-1 4.17E-1 3.56E-1 3.10E-1 2.47E-1 1.75E-1 1.11E-1 5.76E-2 3.5
5.99E-1 5.52E-1 5.11E-1 4.75E-1 4.44E-1 3.82E-1 3.34E-1 2.68E-1 1.91E-1 1.22E-1 6.37E-2 4.0
6.24E-1 5.77E-1 5.36E-1 5.01E-1 4.69E-1 4.06E-1 3.57E-1 2.87E-1 2.07E-1 1.32E-1 6.96E-2 4.5
6.46E-1 5.99E-1 5.59E-1 5.23E-1 4.92E-1 4.27E-1 3.78E-1 3.06E-1 2.21E-1 1.43E-1 7.54E-2 5.
6.82E-1 6.38E-1 5.98E-1 5.63E-1 5.32E-1 4.66E-1 4.15E-1 3.40E-1 2.49E-1 1.62E-1 8.65E-2 6.
0.00E+ 6.69E-1 6.31E-1 5.96E-1 5.65E-1 5.00E-1 4.48E-1 3.70E-1 2.74E-1 1.80E-1 9.72E-2 7.

$
for
10th
%iles

6. 3.18E-1 0.00E+ 6.58E-1 6.25E-1 5.94E-1 5.29E-1 4.77E-1 3.97E-1 2.98E-1 1.98E-1 1.08E-1 8.
7. 2.88E-1 3.31E-1 0.00E+ 6.50E-1 6.20E-1 5.56E-1 5.03E-1 4.22E-1 3.19E-1 2.14E-1 1.18E-1 9.
8. 2.64E-1 3.05E-1 3.42E-1 0.00E+ 6.42E-1 5.79E-1 5.26E-1 4.45E-1 3.40E-1 2.30E-1 1.27E-1 10.
9. 2.43E-1 2.82E-1 3.18E-1 3.50E-1 0.00E+ 6.27E-1 5.76E-1 4.95E-1 3.85E-1 2.66E-1 1.50E-1 12.5
10. 2.26E-1 2.63E-1 2.97E-1 3.29E-1 3.58E-1 0.00E+ 6.16E-1 5.36E-1 4.25E-1 2.99E-1 1.72E-1 15.
12.5 1.91E-1 2.25E-1 2.56E-1 2.85E-1 3.12E-1 3.73E-1 0.00E+ 6.01E-1 4.89E-1 3.56E-1 2.11E-1 20.
15. 1.66E-1 1.96E-1 2.25E-1 2.52E-1 2.77E-1 3.34E-1 3.84E-1 0.00E+ 5.82E-1 4.45E-1 2.79E-1 30.
20. 1.31E-1 1.57E-1 1.81E-1 2.04E-1 2.26E-1 2.78E-1 3.23E-1 3.99E-1 0.00E+ 5.64E-1 3.83E-1 50.
30. 9.26E-2 1.12E-1 1.30E-1 1.48E-1 1.66E-1 2.07E-1 2.45E-1 3.12E-1 4.18E-1 0.00E+ 5.45E-1 100.
50. 5.83E-2 7.09E-2 8.35E-2 9.59E-2 1.08E-1 1.38E-1 1.66E-1 2.18E-1 3.06E-1 4.36E-1 0.00E+
100. 3.03E-2 3.71E-2 4.40E-2 5.09E-2 5.78E-2 7.50E-2 9.19E-2 1.25E-1 1.84E-1 2.85E-1 4.55E-1

6. 7. 8. 9. 10. 12.5 15. 20. 30. 50. 100.
" for 10th percentiles
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Table C.5.  95th and 5th percentiles of beta (", $) distribution.

$ for 95th percentiles
0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.00E+0 9.24E-1 5.99E-1 4.09E-1 3.06E-1 2.44E-1 2.02E-1 1.72E-1 1.50E-1 1.33E-1 1.19E-1 0.1 

"
for
95th
%iles

0.00   E+0 9.94E-1 9.02E-1 7.71E-1 6.58E-1 5.69E-1 4.99E-1 4.44E-1 3.99E-1 3.62E-1 3.32E-1 0.5 

$
for
5th
%iles

0.1 8.66E-11 0.00E 0 9.50E-1 8.64E-1 7.76E-1 6.98E-1 6.32E-1 5.75E-1 5.27E-1 4.86E-1 4.51E-1 1.0 
0.5 3.38E-13 6.16E-3 0.00 +0 9.03E-1 8.32E-1 7.64E-1 7.04E-1 6.51E-1 6.04E-1 5.63E-1 5.27E-1 1.5 
1.0 9.77E-14 2.50E-3 5.00E-2 0.00 +0 8.65E-1 8.06E-1 7.51E-1 7.02E-1 6.57E-1 6.18E-1 5.82E-1 2.0 
1.5 5.46E-14 1.54E-3 3.36E-2 9.73E-2 0.0 E+0 8.35E-1 7.85E-1 7.39E-1 6.97E-1 6.59E-1 6.24E-1 2.5 
2.0 3.77E-14 1.11E-3 2.53E-2 7.60E-2 1.35E-1 0.00 +0 8.11E-1 7.68E-1 7.29E-1 6.92E-1 6.59E-1 3.0 
2.5 2.87E-14 8.68E-4 2.03E-2 6.24E-2 1.13E-1 1.65E-1 0.0 E+0 7.91E-1 7.54E-1 7.19E-1 6.87E-1 3.5 
3.0 2.31E-14 7.12E-4 1.70E-2 5.30E-2 9.76E-2 1.44E-1 1.89E-1 0.00 +0 7.75E-1 7.42E-1 7.11E-1 4.0 
3.5 1.94E-14 6.03E-4 1.45E-2 4.60E-2 8.57E-2 1.28E-1 1.69E-1 2.09E-1 0.00 +0 7.61E-1 7.31E-1 4.5 
4.0 1.67E-14 5.23E-4 1.27E-2 4.07E-2 7.64E-2 1.15E-1 1.53E-1 1.90E-1 2.25E-1 0.00 +0 7.49E-1 5.0 
4.5 1.46E-14 4.62E-4 1.13E-2 3.64E-2 6.90E-2 1.04E-1 1.40E-1 1.75E-1 2.08E-1 2.39E-1 0.00 +0
5. 1.30E-14 4.13E-4 1.02E-2 3.30E-2 6.28E-2 9.55E-2 1.29E-1 1.61E-1 1.93E-1 2.23E-1 2.51E-1
6. 1.07E-14 3.42E-4 8.51E-3 2.78E-2 5.34E-2 8.18E-2 1.11E-1 1.40E-1 1.69E-1 1.96E-1 2.22E-1
7. 9.05E-15 2.91E-4 7.30E-3 2.40E-2 4.64E-2 7.15E-2 9.77E-2 1.24E-1 1.50E-1 1.75E-1 2.00E-1
8. 7.85E-15 2.54E-4 6.39E-3 2.11E-2 4.10E-2 6.36E-2 8.73E-2 1.11E-1 1.35E-1 1.58E-1 1.81E-1
9. 6.93E-15 2.25E-4 5.68E-3 1.89E-2 3.68E-2 5.72E-2 7.88E-2 1.01E-1 1.23E-1 1.45E-1 1.66E-1
10. 6.21E-15 2.02E-4 5.12E-3 1.70E-2 3.33E-2 5.20E-2 7.19E-2 9.22E-2 1.13E-1 1.33E-1 1.53E-1
12.5 4.92E-15 1.60E-4 4.10E-3 1.37E-2 2.70E-2 4.24E-2 5.89E-2 7.60E-2 9.33E-2 1.11E-1 1.28E-1
15. 4.08E-15 1.33E-4 3.41E-3 1.15E-2 2.27E-2 3.57E-2 4.99E-2 6.47E-2 7.97E-2 9.48E-2 1.10E-1
20. 3.03E-15 9.95E-5 2.56E-3 8.65E-3 1.72E-2 2.72E-2 3.82E-2 4.98E-2 6.17E-2 7.37E-2 8.59E-2
30. 2.01E-15 6.61E-5 1.71E-3 5.80E-3 1.16E-2 1.85E-2 2.60E-2 3.41E-2 4.25E-2 5.11E-2 5.98E-2
50. 1.20E-15 3.95E-5 1.03E-3 3.49E-3 7.01E-3 1.12E-2 1.59E-2 2.09E-2 2.62E-2 3.16E-2 3.72E-2
100. 5.96E-16 1.97E-5 5.13E-4 1.75E-3 3.53E-3 5.67E-3 8.06E-3 1.06E-2 1.34E-2 1.62E-2 1.91E-2
   0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

" for 5th percentiles

For example, the 5th percentile of a beta(1.5, 10) distribution is 1.70E!2.  The 95th percentile of the same distribution (from the table continuation on the next page)
is 3.17E!1.  If X has a beta(", $) distributions with " > $, use the relation X = 1 ! Y, where Y has a beta($, ") distribution.  Thus, for example, the 5th and 95th
percentiles of a beta(10, 1.5) distribution are 1 ! 3.17E!1 = 0.683 and 1 ! 1.70E!2 = 0.9830, respectively.

For a beta(", $) distribution with $ >> ", the p quantile is approximated by  .  For example, the 5th percentile of a beta(2,100) distribution,χ α β χ αp p
2 22 2 2( ) / [ ( )]+

shown here as 3.53E!3, is approximated by  = 0.711/200.711 = 3.54E!3.  The 95th percentile, 4.61E!2, is approximated by 9.488/209.488χ χ0 05
2

0 05
24 200 4. .( ) / [ ( )]+

= 4.53E!2.
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Table C.5  95th and 5th percentiles of beta (", $) distribution (continued).

$ for 95th percentiles
6. 7. 8. 9. 10. 12.5 15. 20. 30. 50. 100.

9.91E-2 8.47E-2 7.39E-2 6.56E-2 5.89E-2 4.70E-2 3.91E-2 2.92E-2 1.94E-2 1.16E-2 5.81E-3 0.1

"
for
95th
%iles

2.83E-1 2.47E-1 2.19E-1 1.97E-1 1.79E-1 1.45E-1 1.22E-1 9.27E-2 6.25E-2 3.79E-2 1.91E-2 0.5
3.93E-1 3.48E-1 3.12E-1 2.83E-1 2.59E-1 2.13E-1 1.81E-1 1.39E-1 9.50E-2 5.82E-2 2.95E-2 1.0
4.66E-1 4.17E-1 3.78E-1 3.45E-1 3.17E-1 2.64E-1 2.26E-1 1.76E-1 1.21E-1 7.48E-2 3.82E-2 1.5
5.21E-1 4.71E-1 4.29E-1 3.94E-1 3.64E-1 3.06E-1 2.64E-1 2.07E-1 1.44E-1 8.97E-2 4.61E-2 2.0
5.64E-1 5.14E-1 4.71E-1 4.35E-1 4.04E-1 3.42E-1 2.97E-1 2.34E-1 1.65E-1 1.03E-1 5.35E-2 2.5
6.00E-1 5.50E-1 5.07E-1 4.70E-1 4.38E-1 3.74E-1 3.26E-1 2.59E-1 1.84E-1 1.16E-1 6.04E-2 3.0
6.30E-1 5.80E-1 5.38E-1 5.01E-1 4.68E-1 4.02E-1 3.53E-1 2.82E-1 2.02E-1 1.28E-1 6.71E-2 3.5
6.55E-1 6.07E-1 5.64E-1 5.27E-1 4.95E-1 4.28E-1 3.77E-1 3.04E-1 2.19E-1 1.40E-1 7.36E-2 4.0
6.77E-1 6.30E-1 5.88E-1 5.51E-1 5.18E-1 4.51E-1 3.99E-1 3.23E-1 2.34E-1 1.51E-1 7.98E-2 4.5
6.96E-1 6.50E-1 6.09E-1 5.73E-1 5.40E-1 4.72E-1 4.19E-1 3.42E-1 2.49E-1 1.62E-1 8.59E-2 5.
7.29E-1 6.85E-1 6.45E-1 6.10E-1 5.77E-1 5.10E-1 4.56E-1 3.75E-1 2.77E-1 1.82E-1 9.75E-2 6.
0.00E+ 7.13E-1 6.75E-1 6.40E-1 6.09E-1 5.42E-1 4.87E-1 4.05E-1 3.03E-1 2.01E-1 1.09E-1 7.

$
for
5th
%iles

6. 2.71E-1 0.00+0 7.00E-1 6.67E-1 6.36E-1 5.70E-1 5.15E-1 4.32E-1 3.26E-1 2.18E-1 1.19E-1 8.
7. 2.45E-1 2.87E-1 0.00E0 6.89E-1 6.59E-1 5.94E-1 5.40E-1 4.57E-1 3.48E-1 2.35E-1 1.30E-1 9.
8. 2.24E-1 2.64E-1 3.00E-1 0.00E0 6.80E-1 6.16E-1 5.63E-1 4.79E-1 3.68E-1 2.51E-1 1.40E-1 10.
9. 2.06E-1 2.44E-1 2.79E-1 3.11E-1 0.00E0 6.62E-1 6.10E-1 5.27E-1 4.13E-1 2.88E-1 1.63E-1 12.5
10. 1.91E-1 2.27E-1 2.60E-1 2.91E-1 3.20E-1 0.00E0 6.48E-1 5.67E-1 4.52E-1 3.21E-1 1.85E-1 15.
12.5 1.61E-1 1.93E-1 2.23E-1 2.52E-1 2.78E-1 3.38E-1 0.00E0 6.29E-1 5.15E-1 3.77E-1 2.25E-1 20.
15. 1.40E-1 1.68E-1 1.96E-1 2.22E-1 2.46E-1 3.03E-1 3.52E-1 0.00E0 6.05E-1 4.65E-1 2.94E-1 30.
20. 1.10E-1 1.34E-1 1.57E-1 1.79E-1 2.00E-1 2.50E-1 2.95E-1 3.71E-1 0.00E0 5.82E-1 3.98E-1 50.
30. 7.74E-2 9.50E-2 1.12E-1 1.29E-1 1.46E-1 1.86E-1 2.23E-1 2.89E-1 3.95E-1 0.00E0 5.58E-1 100.
50. 4.86E-2 6.02E-2 7.18E-2 8.34E-2 9.49E-2 1.23E-1 1.50E-1 2.01E-1 2.88E-1 4.18E-1 0.00E0
100. 2.52E-2 3.14E-2 3.77E-2 4.42E-2 5.06E-2 6.68E-2 8.29E-2 1.14E-1 1.73E-1 2.71E-1 4.42E-1

6. 7. 8. 9. 10. 12.5 15. 20. 30. 50. 100.
" for 5th percentiles
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Table C.6.  97.5th and 2.5th percentiles of beta (", $) distribution.
$ for 97.5th percentiles

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1.00E+0 9.80E-1 7.76E-1 5.84E-1 4.58E-1 3.74E-1 3.16E-1 2.72E-1 2.40E-1 2.14E-1 1.93E-1 0.1 

"
for
97.5th
%iles

0.00   E+0 9.98E-1 9.51E-1 8.53E-1 7.53E-1 6.67E-1 5.95E-1 5.36E-1 4.86E-1 4.45E-1 4.10E-1 0.5 

$
for
2.5th
%iles

0.1 8.46E-14 0.00 +0 9.75E-1 9.15E-1 8.42E-1 7.71E-1 7.08E-1 6.51E-1 6.02E-1 5.59E-1 5.22E-1 1.0 
0.5 3.30E-16 1.54E-3 0.00 +0 9.39E-1 8.82E-1 8.23E-1 7.67E-1 7.16E-1 6.70E-1 6.29E-1 5.91E-1 1.5 
1.0 9.54E-17 6.25E-4 2.50E-2 0.00 +0 9.06E-1 8.55E-1 8.06E-1 7.59E-1 7.16E-1 6.77E-1 6.41E-1 2.0 
1.5 5.34E-17 3.86E-4 1.67E-2 6.08E-2 0.00 +0 8.77E-1 8.33E-1 7.91E-1 7.51E-1 7.14E-1 6.79E-1 2.5 
2.0 3.68E-17 2.78E-4 1.26E-2 4.73E-2 9.43E-2 0.00 +0 8.53E-1 8.14E-1 7.77E-1 7.42E-1 7.10E-1 3.0 
2.5 2.80E-17 2.17E-4 1.01E-2 3.87E-2 7.87E-2 1.23E-1 0.00 +0 8.33E-1 7.98E-1 7.65E-1 7.34E-1 3.5 
3.0 2.26E-17 1.78E-4 8.40E-3 3.28E-2 6.76E-2 1.07E-1 1.47E-1 0.00 +0 8.16E-1 7.85E-1 7.55E-1 4.0 
3.5 1.89E-17 1.51E-4 7.21E-3 2.85E-2 5.92E-2 9.44E-2 1.31E-1 1.67E-1 0.00 +0 8.01E-1 7.73E-1 4.5 
4.0 1.63E-17 1.31E-4 6.31E-3 2.51E-2 5.27E-2 8.47E-2 1.18E-1 1.52E-1 1.84E-1 0.00 +0 7.88E-1 5.0 
4.5 1.43E-17 1.15E-4 5.61E-3 2.25E-2 4.75E-2 7.68E-2 1.08E-1 1.39E-1 1.69E-1 1.99E-1 0.00 +0
5. 1.27E-17 1.03E-4 5.05E-3 2.04E-2 4.33E-2 7.02E-2 9.90E-2 1.28E-1 1.57E-1 1.85E-1 2.12E-1
6. 1.04E-17 8.53E-5 4.21E-3 1.71E-2 3.67E-2 6.00E-2 8.52E-2 1.11E-1 1.37E-1 1.62E-1 1.87E-1
7. 8.83E-18 7.27E-5 3.61E-3 1.48E-2 3.19E-2 5.24E-2 7.49E-2 9.81E-2 1.22E-1 1.45E-1 1.67E-1
8. 7.67E-18 6.33E-5 3.16E-3 1.30E-2 2.81E-2 4.65E-2 6.67E-2 8.78E-2 1.09E-1 1.31E-1 1.52E-1
9. 6.77E-18 5.61E-5 2.81E-3 1.16E-2 2.52E-2 4.18E-2 6.02E-2 7.95E-2 9.92E-2 1.19E-1 1.39E-1
10. 6.06E-18 5.03E-5 2.53E-3 1.05E-2 2.28E-2 3.80E-2 5.49E-2 7.27E-2 9.09E-2 1.09E-1 1.28E-1
12.5 4.81E-18 4.01E-5 2.02E-3 8.43E-3 1.85E-2 3.09E-2 4.49E-2 5.98E-2 7.52E-2 9.08E-2 1.07E-1
15. 3.98E-18 3.33E-5 1.69E-3 7.05E-3 1.55E-2 2.61E-2 3.80E-2 5.08E-2 6.41E-2 7.77E-2 9.15E-2
20. 2.96E-18a 2.49E-5 1.27E-3 5.31E-3 1.17E-2 1.98E-2 2.91E-2 3.90E-2 4.95E-2 6.03E-2 7.13E-2
30. 1.96E-18 1.65E-5 8.44E-4 3.56E-3 7.91E-3 1.34E-2 1.98E-2 2.67E-2 3.40E-2 4.17E-2 4.95E-2
50. 1.17E-18 9.87E-6 5.06E-4 2.14E-3 4.78E-3 8.16E-3 1.21E-2 1.64E-2 2.09E-2 2.58E-2 3.08E-2
100. 5.82E-19a 4.92E-6 2.53E-4 1.08E-3 2.41E-3 4.12E-3 6.11E-3 8.31E-3 1.07E-2 1.32E-2 1.58E-2
   0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

" for 2.5th percentiles
a.  May be inaccurate.  Calculation had not converged after 100 iterations.

For example, the 2.5th percentile of a beta(1.5, 10) distribution is 1.05E!2.  The 97.5th percentile of the same distribution (from the table continuation on the next
page) is 3.67E!1.  If X has a beta(", $) distributions with " > $, use the relation X = 1 ! Y, where Y has a beta($, ") distribution.  Thus, for example, the 2.5th and
97.5th percentiles of a beta(10, 1.5) distribution are 1 ! 3.67E!1 = 0.633 and 1 ! 1.05E!2 = 0.9895, respectively.

For a beta(", $) distribution with $ >> ", the p quantile is approximated by .  For example, the 2.5th percentile of a beta(2,100) distribution,χ α β χ αp p
2 22 2 2( ) / [ ( )]+

shown here as 2.41E!3, is approximated by  = 0.484/200.484 = 2.41E!3.  The 97.5th percentile, 5.39E!2, is approximated byχ χ0 025
2

0 025
24 200 4. .( ) / [ ( )]+

11.14/211.14 = 5.28E!2.
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Table C.6.  97.5th and 2.5th percentiles of beta (", $) distribution (continued).

$ for 97.5th percentiles
6. 7. 8. 9. 10. 12.5 15. 20. 30. 50. 100.

1.61E-1 1.38E-1 1.21E-1 1.08E-1 9.73E-2 7.79E-2 6.50E-2 4.88E-2 3.25E-2 1.95E-2 9.78E-3 0.1

"
for
97.5th
%iles

3.53E-1 3.10E-1 2.77E-1 2.49E-1 2.27E-1 1.85E-1 1.57E-1 1.19E-1 8.10E-2 4.92E-2 2.49E-2 0.5
4.59E-1 4.10E-1 3.69E-1 3.36E-1 3.08E-1 2.56E-1 2.18E-1 1.68E-1 1.16E-1 7.11E-2 3.62E-2 1.0
5.28E-1 4.76E-1 4.33E-1 3.97E-1 3.67E-1 3.07E-1 2.64E-1 2.06E-1 1.43E-1 8.88E-2 4.56E-2 1.5
5.79E-1 5.27E-1 4.82E-1 4.45E-1 4.13E-1 3.49E-1 3.02E-1 2.38E-1 1.67E-1 1.04E-1 5.39E-2 2.0
6.19E-1 5.67E-1 5.23E-1 4.84E-1 4.51E-1 3.85E-1 3.35E-1 2.66E-1 1.88E-1 1.19E-1 6.17E-2 2.5
6.51E-1 6.00E-1 5.56E-1 5.18E-1 4.84E-1 4.16E-1 3.64E-1 2.92E-1 2.08E-1 1.32E-1 6.90E-2 3.0
6.78E-1 6.28E-1 5.85E-1 5.47E-1 5.13E-1 4.44E-1 3.91E-1 3.15E-1 2.26E-1 1.45E-1 7.60E-2 3.5
7.01E-1 6.52E-1 6.10E-1 5.72E-1 5.38E-1 4.68E-1 4.14E-1 3.36E-1 2.43E-1 1.57E-1 8.28E-2 4.0
7.20E-1 6.74E-1 6.32E-1 5.94E-1 5.61E-1 4.91E-1 4.36E-1 3.56E-1 2.59E-1 1.68E-1 8.93E-2 4.5
7.38E-1 6.92E-1 6.51E-1 6.14E-1 5.81E-1 5.11E-1 4.56E-1 3.74E-1 2.75E-1 1.79E-1 9.56E-2 5.
7.66E-1 7.23E-1 6.84E-1 6.49E-1 6.16E-1 5.47E-1 4.91E-1 4.07E-1 3.03E-1 2.00E-1 1.08E-1 6.
0.00E0 7.49E-1 7.11E-1 6.77E-1 6.46E-1 5.78E-1 5.22E-1 4.36E-1 3.28E-1 2.19E-1 1.19E-1 7.

$
for
2.5th
%iles

6. 2.34E-1 0.00E+ 7.34E-1 7.01E-1 6.71E-1 6.04E-1 5.49E-1 4.63E-1 3.52E-1 2.37E-1 1.30E-1 8.
7. 2.11E-1 2.51E-1 0.00E+ 7.22E-1 6.92E-1 6.27E-1 5.73E-1 4.87E-1 3.73E-1 2.54E-1 1.41E-1 9.
8. 1.92E-1 2.30E-1 2.66E-1 0.00E+ 7.11E-1 6.48E-1 5.94E-1 5.08E-1 3.93E-1 2.70E-1 1.51E-1 10.
9. 1.77E-1 2.13E-1 2.47E-1 2.78E-1 0.00E+ 6.90E-1 6.39E-1 5.55E-1 4.38E-1 3.07E-1 1.75E-1 12.5
10. 1.63E-1 1.98E-1 2.30E-1 2.60E-1 2.89E-1 0.00E+ 6.75E-1 5.93E-1 4.76E-1 3.40E-1 1.97E-1 15.
12.5 1.38E-1 1.68E-1 1.97E-1 2.24E-1 2.50E-1 3.10E-1 0.00E+ 6.52E-1 5.38E-1 3.96E-1 2.38E-1 20.
15. 1.19E-1 1.46E-1 1.72E-1 1.97E-1 2.21E-1 2.76E-1 3.25E-1 0.00E+ 6.25E-1 4.83E-1 3.07E-1 30.
20. 9.36E-2 1.16E-1 1.38E-1 1.59E-1 1.79E-1 2.28E-1 2.72E-1 3.48E-1 0.00E+ 5.97E-1 4.10E-1 50.
30. 6.56E-2 8.19E-2 9.83E-2 1.14E-1 1.30E-1 1.69E-1 2.05E-1 2.70E-1 3.75E-1 0.00E+ 5.69E-1 100.
50. 4.11E-2 5.18E-2 6.26E-2 7.35E-2 8.44E-2 1.11E-1 1.38E-1 1.87E-1 2.73E-1 4.03E-1 0.00E+
100. 2.13E-2 2.70E-2 3.28E-2 3.88E-2 4.49E-2 6.02E-2 7.56E-2 1.06E-1 1.63E-1 2.60E-1 4.31E-1

6. 7. 8. 9. 10. 12.5 15. 20. 30. 50. 100.
" for 2.5th percentiles
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Table C.7.  Acceptance limits for the Kolmogorov test of goodness of fit.

Sample size
(n)

Significance level

0.20 0.15 0.10 0.05 0.01

  1 0.900 0.925 0.950 0.975 0.995
  2 0.684 0.726 0.776 0.842 0.929
  3 0.565 0.596 0.636 0.708 0.829
  4 0.493 0.525 0.565 0.624 0.734
  5 0.447 0.474 0.509 0.563 0.669
  6 0.410 0.435 0.468 0.519 0.617
  7 0.381 0.405 0.436 0.483 0.576
  8 0.358 0.381 0.410 0.454 0.542
  9 0.339 0.360 0.387 0.430 0.513
10 0.323 0.343 0.369 0.409 0.489
11 0.308 0.327 0.352 0.391 0.468
12 0.296 0.314 0.338 0.375 0.449
13 0.285 0.302 0.325 0.361 0.432
14 0.275 0.292 0.314 0.349 0.418
15 0.266 0.282 0.304 0.338 0.404
16 0.258 0.274 0.295 0.327 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259 0.279 0.309 0.371
19 0.237 0.252 0.271 0.301 0.361
20 0.232 0.246 0.265 0.294 0.352
25 0.208 0.221 0.238 0.264 0.317
30 0.190 0.202 0.218 0.242 0.290
35 0.177 0.187 0.202 0.224 0.269
40 0.165 0.176 0.189 0.210 0.252
50 0.148 0.158 0.170 0.188 0.226
60 0.136 0.144 0.155 0.172 0.207
70 0.126 0.134 0.144 0.160 0.192
80 0.118 0.125 0.135 0.150 0.179

Large n 1.07/ 1.14/n n 1.22/ n 1.36/ n 1.63/ n

Reject the hypothesized distribution F(x) if D = max|Fn(x) − F(x)| exceeds the tabulated value.

The asymptotic formula gives values that are slightly too high ⎯ by 1% to 2% for n = 80.
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Table C.8.  Parameters of constrained noninformative prior for binomial p.

p0 b "

0.50
0.40
0.30
0.20
0.15
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.005
0.001

0

   0.
!0.8166
!1.748
!3.031
!4.027
!5.743
!6.295
!6.958
!7.821
!8.978
!10.61
!13.08
!17.22
!25.53
!50.52
!100.5
!500.5

!4

0.5000
0.4168
0.3590
0.3243
0.3211
0.3424
0.3522
0.3648
0.3802
0.3980
0.4171
0.4358
0.4531
0.4693
0.4848
0.4925
0.4985
0.5000

The table gives parameters of the constrained noninformative prior for a binomial parameter p, when the assumed
prior mean is p0.  The exact constrained noninformative prior has the form

fprior(p) % ebpp!1/2(1 ! p)!1/2 ,

with b tabulated above.

The tabulated value " is the first parameter of a beta distribution that has the same mean and variance as the constrained
noninformative prior.  The second parameter of that beta distribution is obtained by solving "/(" + $) = p0.  This results
in the formula $ = "(1 ! p0)/p0.  Then a beta(", $) distribution with these parameters approximates the exact constrained
noninformative prior.

If p0 > 0.50, the exact constrained noninformative prior has positive b.  For example, if p0 = 0.70, look in the table at the
row for 1 ! 0.70, and see that b there is !1.748.  Therefore, the exact constrained noninformative prior is

fprior(p) % ebpp!1/2(1 ! p)!1/2 ,

with b = +1.748.

If p0 > 0.50, the beta approximation is obtained by interchanging the roles of p0 and 1 ! p0 and of " and $ in the above
formulas.  For example, if p0 were 0.30, the beta approximation would have " = 0.3590 and $ = 0.3590×0.70/0.30 =
0.8377.  If instead p0 = 0.70, the beta approximation has " = 0.8377 and $ = 0.3590.
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D.  GLOSSARY

Arithmetic mean.  See mean.

Bathtub curve.  A plot of the failure rate as a function
of system age, showing a high failure rate when the
system is new (the burn-in period), then a low, roughly
constant failure rate, followed by a rising failure rate as
the system becomes old (the wear-out period).  See
burn-in failure.

Bayesian inference.  Statistical inference involving the
use of Bayesian methods.  Bayesian inference uses
probability distributions to model uncertainty in un-
known quantities.  Thus, unknown parameters are
treated formally as if they were random variables.  See
also frequentist inference and statistical inference.

Bias.  The difference between the expected value of an
estimator and the true quantity being estimated.  For
example, if Y is a function of the data that estimates a
parameter 2, the bias of Y is E(Y) ! 2.

Bin.  A group of values of a continuous variable, used
to partition the data into subsets.  For example, event
dates can be grouped so that each year is one bin, and
all the events during a single year form a subset of the
data.

Burn-in failure.  Failures associated with the early
time-frame of a component’s life cycle, during which
the failure rate often starts from a maximum value and
decreases rapidly.  The high failure rate early in the
component’s life cycle can be caused by poor quality
control practices and a natural wear-in or debugging
period.  See bathtub curve.

c.d.f.  See cumulative distribution function.

Cell.  When the data are expressed in a table of counts,
a cell is the smallest element of the table.  Each cell has
an observed count and, under some null hypothesis, an
expected count.  Each cell can be analyzed on its own,
and then compared to the other cells to see if the data
show trends, patterns, or other forms of nonhomogenei-
ty.  In a 1 × J table, as with events in time, each cell
corresponds to one subset of the data.  In a 2 × J table,
as with failures on demand, each data subset corre-
sponds to two cells, one cell for failures and one for
successes.

Central moment.  See moment.

Coefficient of variation.  See relative standard
deviation.

Common-cause failure.  A single event that causes
failure of two or more components at the same time
(also referred to as common-mode failure).

Confidence interval.  In the frequentist approach, a
100p% confidence interval has a probability p of
containing the true unknown parameter.  This is a
property of the procedure, not of any one particular
interval.  Any one interval either does or does not
contain the true parameter.  However, any random data
set leads to a confidence interval, and 100p% of these
contain the true parameter.  Compare with credible
interval.

Conjugate.  A family of prior distributions is conju-
gate, for data from a specified distribution, if a prior
distribution in the family results in the posterior distri-
bution also being in the family.  A prior distribution in
the conjugate family is called a conjugate prior.  For
example, the gamma distributions are conjugate for
Poisson data, and the beta distributions are conjugate
for binomial data.

Credible interval.  In the Bayesian approach, a 100p%
credible interval contains 100p% of the Bayesian
probability distribution.  For example, if 8 has been
estimated by a posterior distribution, the 5th and 95th
percentiles of this distribution contain 90% of the
probability, so they form a (posterior) 90% credible
interval.  It is not required to have equal probability in
the two tails (5% in this example), although it is very
common.  For example, the interval bounded by 0 and
the 90th percentile would also be a 90% credible
interval, a one-sided interval.  Bayes credible intervals
have the same intuitive purpose as frequentist confi-
dence intervals, but their definitions and interpretations
are different.

Cumulative distribution function (c.d.f.).  This
function gives the probability that the random variable
does not exceed a given value x.  For a random variable
X, the c.d.f. F(x) = Pr(X # x).  If X is discrete, such as a
count of events, the c.d.f. is a step function, with a jump
at each possible value of X.  If X is continuous, such as
a duration time, the c.d.f. is continuous.  See also
probability density function.  Do not confuse the
statistics acronym c.d.f. with the PRA acronym CDF,
denoting core damage frequency!
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Density.  See probability density function.

Disjoint.  See mutually exclusive.

Duration.  The time until something of interest hap-
pens.  The thing of interest may be failure to run,
recovery from a failure, restoration of offsite power,
etc.

Error factor.  A representation of one of the parame-
ters of the lognormal distribution, defined as the 95th
percentile divided by the median.  The error factor is a
measure of the spread of the distribution, and is denoted
by EF.

Estimate, estimator.  In the frequentist approach, an
estimator is a function of random data, and an estimate
is the particular value taken by the estimator for a
particular data set.  That is, the term estimator is used
for the random variable, and estimate is used for a
number.  The usual convention of using upper-case
letters for random variables and lower-case letters for
numbers is often ignored in this setting, so the context
must be used to show whether a random variable or a
number is being discussed.

Event rate.  See failure rate for repairable systems,
and replace the word “failure” by “event.”

Expected value.  If X is discrete with p.d.f. f, the
expected value of X, denoted E(X), is Exif(xi).  If
instead X is continuously distributed with density f, the
expected value is Ixf(x)dx.  The expected value of X is
also called the mean of X.  It is a measure of the center
of the distribution of X.

Exposure time.  The length of time during which the
events of interest can possibly occur.  The units must be
specified, such as reactor-critical-years, site-calendar-
hours, or system-operating-hours.  Also called time at
risk.

Failure on demand.  Failure when a standby system is
demanded, even though the system was apparently
ready to function just before the demand.  It is modeled
as a random event, having some probability, but unpre-
dictable on any one specific demand.  Compare stand-
by failure.

Failure rate.  For a repairable system, the failure rate,
8, is such that 8)t is approximately the expected
number of failures in a short time period from t to t +
)t.  If simultaneous failures do not occur, 8)t is also
approximately the probability that a failure will occur

in the period from t to t + )t.  In this setting, 8 is also
called a failure frequency.  For a nonrepairable
system, 8)t is approximately the probability that an
unfailed system at time t will fail in the time period
from t to t + )t.  In this setting, 8 is also called the
hazard rate.

Fractile.  See quantile.

Frequency.  For a repairable system, frequency and
rate are two words with the same meaning, and are
used interchangeably.  If simultaneous events do not
occur, the frequency 8(t) satisfies 8(t))t . Pr (an event
occurs between t and t + )t), for small )t.

Frequentist inference.  Statistical inference that
interprets the probability of an event as the long-term
relative frequency of occurrence of the event, in many
repetitions of an experiment when the event may or may
not occur.  Unknown parameters are regarded as fixed
numbers, not random.  See also Bayesian inference
and statistical inference.

Geometric mean.  The geometric mean is an estimator
of the location or center of a distribution.  It is applica-
ble only for positive data.  The geometric mean, say ,~t
for t1,t2, ..., tn, is defined as 

.[ ]~ exp ( / ) lnt n ti= 1 Σ

It is always less than or equal to the arithmetic mean.

Goodness of fit.  This term refers to a class of
nonparametric methods that are used to study whether
or not a given set of data follows a hypothesized
distribution.  Both hypothesis tests and graphical
methods are used to investigate goodness of fit.

Hazard rate.  For a nonrepairable system, hazard rate
and failure rate are two phrases with the same mean-
ing, used interchangeably.  The hazard rate h(t) satisfies
h(t))t . Pr(t < T # t + )t * T > t), where )t is small and
T denotes the duration time of interest.  The hazard rate
is also called the hazard function.

Hypothesis.  A statement about the model that gener-
ated the data.  If the evidence against the null hypothe-
sis, H0, is strong, H0 is rejected in favor of the alterna-
tive hypothesis, H1.  If the evidence against H0 is not
strong, H0 is “accepted”; that is, it is not necessarily
believed, but it is given the benefit of the doubt and is
not rejected.  
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Improper distribution.  A function that is treated as a
probability distribution function (p.d.f.), but which is
not a p.d.f. because it does not have a finite integral.
For example, a uniform distribution (constant p.d.f.) on
an infinite range is improper.  Improper distributions
are sometimes useful prior distributions, as long as the
resulting posterior distribution is a proper distribution.

Independent.  See statistical independence.

Inference.  See statistical inference.

Initiating event.  Any event, either internal or external
to the plant, that triggers a sequence of events that
challenge plant control and safety systems, whose
failure could potentially lead to core damage or large
early release.

Interval.  The notation (a, b) denotes the interval of all
points from a to b.  This is enough for all the applica-
tions in this handbook.  However, sometimes an addi-
tional refinement is added, giving a degree of mathe-
matical correctness that most readers may ignore:  The
standard notation in mathematics is that (a, b) includes
the points between a and b, but not the two end points.
In set notation, it is {x | a < x < b}.  Square brackets
show that the end points are included.  Thus, (a, b)
includes b but not a, {x | a < x # b}.
 
Interval estimate.  One way of estimating a parameter
is to identify that it falls in some interval (L, U) with a
specified degree of certainty, or confidence.  The
interval (L, U) is referred to as an interval estimate of
the parameter.  L and U are calculated from the random
data.  The frequentist interval estimate is referred to as
a confidence interval.  It does not give a probability
statement about the true parameter value.  Rather, the
interpretation of a 100(1 ! ")% confidence interval is
that, if the random data were drawn many times,
100(1 ! ")% of the resulting interval estimates would
contain the true value.  A Bayesian interval estimate is
referred to as a subjective probability interval, or
credible interval, and can be interpreted as giving a
subjective probability statement about the true parame-
ter value being contained in the interval.  Compare with
point estimate.  See also confidence interval, credible
interval. 

Inverse c.d.f. algorithm.  An algorithm for generating
random numbers (presented in Section 6.3.2.5.4).

Latin hypercube sampling (LHS).  See Monte Carlo
simulation.

Likelihood.  For discrete data, the likelihood is the
probability of the observations.  For continuous data,
the likelihood is the joint density of the observations,
which is the product of the densities of the individual
observations if the observations are independent.  When
some of the observations are discrete and some are
continuous, the likelihood is the product of the two
types.  The likelihood is typically treated as a function
of the parameters, with the data regarded as fixed.

Markov Chain Monte Carlo (MCMC).  See Monte
Carlo simulation.

Maximum likelihood estimator.  For data generated
from a distribution with one unknown parameter, say 2,
the maximum likelihood estimate (MLE) of 2 is the
parameter value that maximizes the likelihood of the
data.  It is a function of the data, and is commonly

denoted .  The MLE is a popular frequentist estima-$θ
tor for two reasons.   (1) In commonly used models, the
MLE is an intuitively natural function of the data.  (2)
Under certain, commonly valid, conditions, as the
number of observations becomes large the MLE is
approximately unbiased with approximately the mini-
mum possible variance, and is approximately normally
distributed.

Mean.  The mean, :, of a random variable X is the
weighted average of the outcomes, where the weights
are the probabilities of the outcomes.  More precisely,
the mean of X is the expected value E(X), Exif(xi) if X is
discrete with p.d.f. f, and Ixf(x)dx if X is continuously
distributed with density f.  See also expected value.

Mean square error or mean squared error.  The
expected squared difference between an estimator and
the true quantity being estimated.  For example, if Y is
a function of the data that estimates a parameter 2, the
mean squared error (MSE) of Y is E[(Y ! 2)2].  It can be
shown that the MSE(Y) = var(Y) + [bias(Y)]2.

Median.  For a random variable X with a continuous
distribution, the median is that value m for which
Pr(X < m) = 0.5, and thus also Pr(X > m) = 0.5.  For a
sample of data values, or for a discrete random variable
X taking a finite number of values with equal proba-
bility, the median is the middle value in the ordered set
of values.  The median m is the 50th percentile, x0.50.
See percentile for the general definition.

Mode.  A mode of a distribution is a local maximum
value of the probability density or probability distribu-
tion function (p.d.f.).  A normal distribution has a single
mode, which measures the center of the distribution. 
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Moment.  The kth moment about a of a random vari-
able X is the expected value of (X  ! a)k.  If X is discrete
with p.d.f. f, this is E(xi!a)kf(xi).  If X is continuous with
density f, the kth moment about a is I(x!a)kf(x)dx.  The
moments about 0 are sometimes called simply “the”
moments.  Moments about the mean are called central
moments.  The first moment is the mean, often denoted
:.  The second central moment is the variance.

Monte Carlo Sampling.  See Monte Carlo simula-
tion.

Monte Carlo simulation.  Generally referred to as
Monte Carlo Sampling by probabilistic risk assessment
(PRA) analysts, Monte Carlo simulation uses a sample
of values from an uncertainty distribution to approxi-
mate the distribution.  Moments and percentiles of the
distribution are approximated by the corresponding
moments and percentiles of the sample.

In the usual PRA application, the initiating event
frequencies and basic event probabilities have Bayesian
distributions.  They are sampled by simple random
sampling or by Latin hypercube sampling (LHS).  The
parameter values are propagated through a fault-
tree/event-tree model to produce a simulation of the
uncertainty distribution of a quantity of interest, such as
core damage frequency.

Monte Carlo simulation is also used to approximate the
posterior distributions of parameters, when direct
calculations are not feasible.  In situations with a single
parameter and a nonconjugate prior, a simple random
sample from the posterior distribution can usually be
constructed.  In more complicated situations, such as
those with multiple interrelated parameters, the un-
known parameters can be simulated by Markov chain
Monte Carlo (MCMC) to produce a sequence, or chain,
of values of each parameter.  The values are not
independent.  However, if the initial portion of the
chain is discarded, the remainder of the terms mimic the
posterior distribution of the parameter.

Mutually exclusive.  Events are mutually exclusive, or
disjoint, if no two of them have any elements in com-
mon.  The intersection of any two of the events is the
empty set.

Nonparametric.  In parametric inference, the data are
assumed to come from a known distributional form,
with only the parameters unknown.  In nonparametric
inference, no distributional form is assumed.  Not only
are the values of the parameters unknown, but the form
of the distribution is unknown as well.  See parametric.

Nonrepairable  system.  A system that can only fail
once, after which data collection stops.  An example is
a standby safety system, if the failure to run cannot be
recovered during the mission of the system.  Data from
a nonrepairable system consist of data from identical
copies of the system.  For example, data from a safety
system may be collected, with each run starting with the
system nominally operable, and the system either
running to completion of the mission or failing before
that time.  The successive demands to run are regarded
as demands on identical copies of the system.  See
repairable system.

Null hypothesis.  See hypothesis.

Order statistics.  The random values arranged from
smallest to largest.  For example, suppose that three
times are observed, with t1 = 8.4,  t2 = 3.0, and  t3 = 5.1.
The order statistics are  t(1) = 3.0, t(2) = 5.1, and t(3) =
8.4.  Before the data are observed, one can consider the
order statistics as random variables, T(1), T(2), ..., T(n).

Outage, outage time.  An outage is an event when a
system is unavailable, that is, out of service for some
reason.  The outage time is the duration of the event.
Compare with unavailability.

Parameter.  A parametric family of distributions is a
collection of distributions that is indexed by one or
more quantities called parameters.  For example,
suppose that f(t; 8) = 8e!8t, where t; 8 >0.  For each
value of 8, f(t; 8) is a probability density function.
Here 8 is the parameter that identifies the particular
density in the family of exponential density functions.
The normal family has two parameters, the mean and
the variance.

Parametric.  Parametric statistical inference is con-
cerned with learning the values of unknown parameters
(and their associated properties) from sample data for
a given or assumed family of distributions.  See
nonparametric.

p.d.f.  See probability density function and probabil-
ity distribution function. 

Percentile.  Consider a continuous distribution with
density (p.d.f.) f and cumulative distribution function
(c.d.f.) F.  The 100qth percentile is the value x such that
F(x) = q, or equivalently

.f u du q
x

( )
−∞
∫ =
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If the distribution is concentrated on the positive line,
the lower limit of integration may be replaced by 0.
The 100qth percentile is equal to the qth quantile.  For
example, the 95th percentile equals the 0.95 quantile.
If X has a discrete distribution, a percentile may not be
unique.  The 100qth percentile is defined in this case as
x such that Pr(X # x) $ 100q% and Pr(X $ x) $
100(1 ! q)%. 

Similarly, for a finite sample, the 100qth percentile is
defined as x such that at least 100q% of the values in
the sample are x or smaller, and at least 100(1 ! q)%
are x or larger.  For example, if a sample is a set of
three numbers, {1.2, 2.5, 5.9}, the median (correspond-
ing to q = 0.5) is 2.5, because at least half of the num-
bers are 2.5 or smaller and at least half are 2.5 or larger.
If the sample has four numbers, {1.2, 2.5, 2.8, 5.9},
then any number from 2.5 to 2.8 can be considered a
median.  In this case, the average, (2.5 + 2.8)/2, is often
chosen.

Point estimate. An estimate of a parameter in the
form of a single number is called a point estimate of the
parameter.  For example, the mean of a sample of
values of a random variable X  is a commonly used
point estimate of the mean of the distribution.  Compare
with interval estimate.

Poisson process.  A process in which events (such as
failures) occur in a way such that the number of events
X  in total time t is described by a Poisson distribution.
See Section 2.2.2, Section 7.2, or Appendix A.6.2 for
more details.

Pool.  To combine data from distinct sources, ignoring
possible differences between the sources.  Data are
sometimes pooled from distinct time periods, compon-
ents, trains, and/or power plants.

Population.  In the PRA setting, population refers to
the random distribution that generates data.  Population
attributes, such as the population mean or population
median, are those attributes of the probability distribu-
tion.  Compare with sample.

Posterior credible interval.  See credible interval.

Posterior distribution.  A distribution that quantifies,
in a Bayesian way, the belief about a parameter after
data have been observed.  It reflects both the prior
belief and the observed data.

Power of a test.  The probability that the test will reject
H0 when H0 is false.  If many possible alternatives to H0

are considered, the power depends on the particular
alternative.  See hypothesis.

Prior.  A colloquial abbreviation for prior distribu-
tion.

Prior distribution.  A distribution that quantifies, in a
Bayesian way, the belief about a parameter before any
data have been observed.

Probability model.  A term for the set of mathematical
relationships which are used to define both cumulative
distribution functions and either probability distribution
functions (discrete case) or probability density func-
tions (continuous case).

Probability density function (p.d.f.).  For a continu-
ous random variable X, the probability density function
f satisfies

.Pr( ) ( )a X b f x dx
a

b
≤ ≤ = ∫

Properties of the density are

f(x) $ 0 for all x

f x dx( )
− ∞

∞

∫ = 1

f(x))x . Pr(x < X # x + )x) for small )x.

The p.d.f. is related to the c.d.f. by

f(x) = FN(x), the derivative, 

and

 .F x f u du
x

( ) ( )=
−∞∫

See cumulative distribution function.

Probability distribution function (p.d.f.).  For a
discrete random variable X, the p.d.f. f(x) = Pr(X = x).

p-value.  In the context of testing, the p-value is the
significance level at which the data just barely cause H0

to be rejected.  H0 is rejected when a test statistic is
extreme, and the p-value is the probability (under H0)
that the random test statistic would be at least as ex-
treme as actually observed.

Quantile.  Consider a continuous distribution with
density (p.d.f.) f and cumulative distribution function
(c.d.f.) F.  The qth quantile is the value x such that F(x)
= q, or equivalently:

f u du q
x

( )
−∞∫ =
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If the distribution is concentrated on the positive line,
the lower limit of integration may be replaced by 0.
The qth quantile is equal to the (100q)th percentile.  For
example, the 0.95 quantile equals the 95th percentile.
If X has a discrete distribution, a quantile may not be
unique.  Some authors use the term fractile instead of
quantile.  See percentile for a fuller explanation. 

Random sample.  x1, ..., xn are a random sample if they
are the observed values of X1, ..., Xn, where the Xis are
statistically independent of each other and all have the
same distribution.

Random variable.  A rule that assigns a number to
every outcome in a sample space.  For example, if a
pump was demanded to start n times, the sample space
consists of all the possible outcomes, with their proba-
bilities.  A random variable of interest might be the
number of failures to start.  If a stuck valve is repaired,
the sample space consists of all the possible outcomes
of the repair process, with their probabilities.  A ran-
dom variable of interest might be the time required for
repair, a number.

Range.  The difference between the largest and smallest
values of a sample is called the range of the sample.  

Rate.  See frequency.

Reactor critical year.  8760 hours during which a
reactor is critical.

Rejection-method algorithm.  An algorithm for
generating a random sample from a particular distribu-
tion.  Its general form is given in Section 6.2.2.6, and
applied in several places there and in Section 6.3.2.4. 

Relative standard deviation.  The standard deviation,
expressed as a fraction of the mean.  The relative
standard deviation of X is st.dev.(X)/E(X).  Some
authors call it the coefficient of variation, and express
it as a percent.

Relative variance.  The square of the relative stan-
dard deviation.  The relative variance of X is
var(X)/[E(X)]2.

Renewal process.  A process in which events (such as
failures or restorations) occur in a way such that the
times between events are independent and identically
distributed.  For example, if the process consists of
failures and nearly instantaneous repairs, each repair
restores the system to good-as-new condition.

Repairable system.  A system that can fail repeatedly.
Each failure is followed by repair, and the possibility of
another failure sooner or later.  An example is a power
plant, with initiating events counted as the “failures.”
After such an event, the plant is brought back up to its
operating condition, and more initiating events can
eventually occur.  See nonrepairable system.

Residual.  When a model is fitted to data, the residual
for a data point is the data value minus the fitted value
(the estimated mean).  The residuals together can be
used to quantify the overall scatter of the data around
the fitted model.  If the assumed model assigns different
variances to different data points, the standardized
residuals are sometimes constructed.  A standardized
residual is the ordinary residual divided by its esti-
mated standard deviation.

Return-to-service test.  A test performed at the end of
maintenance, which must be successful.  If the system
does not perform successfully on the test, the mainte-
nance is resumed and the test is not counted as a return-
to-service test.  A return-to-service test can demonstrate
that no latent failed conditions exist (see standby
failure), but it provides absolutely no information about
the probability of failure on a later demand (see failure
on demand).

Sample.  This term refers to data that are generated
randomly from some distribution.  Sample attributes,
such as the sample mean or sample median, are those
attributes calculated from the sample.  They may be
used as estimators of the corresponding population
attributes.  The sample may be thought of as random,
before the data are generated, or as fixed, after the data
are generated.  See also population, random sample,
sample mean, sample median, and sample variance.

Sample mean.  The arithmetic average of the numbers
in a random sample.  If the numbers are x1, ... , xn, the
sample mean is often denoted .  It is an estimate ofx
the population mean, that is, of the expected value
E(X).

Sample median.  Let x(1), ... x(n) be the order statistics
from a random sample.  The sample median is the
middle value.  If n is odd, the sample median is  x([n+1]/2).
If n is even, the sample median is any number between
x(n/2) and x(n/2 + 1) , although usually the average of these
two numbers is used.

Sample variance.  Let x1, ... , xn be a random sample,
with sample mean .  The sample variance, oftenx
denoted s2, is
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It is an estimate of the population variance, var(X).

Significance level of a test.  The probability of making
a Type I error, that is, of rejecting H0 when H0 is true.
(If H0 includes a number of possibilities, so that the
probability of rejecting H0 varies, the significance level
is defined as the maximum of those probabilities.)  The
significance level is denoted by ".  Compare with p-
value and statistically significant.

Skewed distribution.  A distribution that is not sym-
metrical.  A distribution that is restricted to the range
from 0 to 4 is typically skewed to the right, or positive-
ly skewed.  Its mean is larger than its median, and the
95th percentile is farther from the median than the 5th
percentile is.  The Poisson, gamma, and lognormal
distributions are a few examples of positively skewed
distributions.

Standard deviation.  The standard deviation of a
distribution is the square root of the variance.  The
standard deviation and variance are two measures of
how much spread or dispersion there is in a distribution.

Standard error.  The estimated standard deviation of
the estimator of a parameter, in the frequentist ap-
proach.  For example, suppose that 8 is the parameter

to be estimated, and is the estimator.  The estimator$λ
depends on random data, and therefore is random, with

a standard deviation, s.d.( ).  The estimated value of$λ
this standard deviation is the standard error for 8.

Standardized residual.  See residual.

Standby failure.  For a standby system, failure to start
resulting from an existing, or latent, failed condition.
The system is in this failed condition for some time, but
the condition is not discovered until the demand.
Compare failure on demand.

Statistic.  A function of the data, such as the sample
mean or the Pearson chi-squared statistic.  Before the
data are observed, the statistic is a random variable
which can take many values, depending on the random
data.  The observed value of a statistic is a number.

Statistical independence.  Two events are statistically
independent if the probability of both occurring is the
product of their marginal (or individual) probabilities:
Pr(E11E2) = Pr(E1) × Pr(E2) .  Three or more events are
statistically independent if the probability of any set of

the events is equal to the product of the probabilities of
those events.  Two or more random variables are
statistically independent if their joint p.d.f. equals the
product of the marginal (or individual) p.d.f.s.   For
brevity, the word statistically is often dropped.

It can be shown that two random variables are statisti-
cally independent if and only if any event defined in
terms of one random variable is statistically independ-
ent of any event defined in terms of the other random
variable.  (A similar statement holds for more than two
random variables.)  For example, suppose that  X and Y
are independent continuously distributed random
variables, with joint density

 .f x y f x f yX Y X Y, ( , ) ( ) ( )=

Let A be the event a # X # b, and let B be the event c #
Y # d.  Then

Pr(A1B) = Pr(a # X # b and c # Y # d)

= f x y dydxX Yc

d

a

b

, ( , )∫∫
by the definition of a joint density

= f x f y dydxX Yc

d

a

b
( ) ( )∫∫

because X and Y are independent

= f x dx f y dyX Yc

d

a

b
( ) ( )∫∫

evaluating the integral

= Pr(a # X # b)Pr(c # Y # d)

by definition of the marginal densities

= Pr(A) × Pr(B).

Statistical inference.  The area of statistics concerned
with using sample data to answer questions and make
statements about the distribution of a random variable
from which the sample data were obtained.

Statistically significant.  A departure from a null
hypothesis is called statistically significant if the
hypothesis is rejected with some small significance
level, customarily set to 0.05.  See p-value and
significance level of a test.
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Stochastic.  Referring to a random, rather than a
deterministic, process.  This is an elevated word for
random.

System.  In this handbook, system is the general word
used to denote a collection of hardware for which data
are collected.  The term can apply to a specific system
typically found in a nuclear power plant, such as the
auxiliary feedwater system, or to a train, or a compo-
nent, or even a small piece part, as long as data for the
system are reported.

Time at risk.  See exposure time.

Type I error.  A rejection of the null hypothesis when
it is true.

Type II error.  “Acceptance” of the null hypothesis
when it is false, that is, failure to reject the null hypoth-
esis when it is false.

Unavailability.  For a standby system, the probability
that the system is unavailable, out of service, when
demanded.  This may be divided into different causes
— unavailability from planned maintenance and un-
availability from unplanned maintenance.  Unavailabil-
ity is distinct from failure to start of a nominally avail-
able system.  Compare outage.

Uncertainty.  The imprecisions in the analyst’s knowl-
edge or available information about the input parame-
ters to PRA models, the PRA models themselves, and
the outputs from such models.

Variance.  The variance of a random variable X,
denoted by F2, is the second moment about the mean,
the average of the squared deviations from the mean,
E[(X!:)2].  It measures the dispersion in the distribu-
tion.  Compare standard deviation.
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